論文の概要: Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction
- arxiv url: http://arxiv.org/abs/2401.16453v1
- Date: Mon, 29 Jan 2024 06:17:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 17:42:35.577911
- Title: Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction
- Title(参考訳): 長期交通予測のためのハイブリッド変圧器と時空間自己監督学習
- Authors: Wang Zhu, Doudou Zhang, Baichao Long, Jianli Xiao
- Abstract要約: 本稿では,ハイブリッドトランスフォーマーと自己教師型学習を組み合わせたモデルを提案する。
このモデルは、トラフィックのシーケンスレベルにデータ拡張技術を適用することにより、適応的なデータ拡張を強化する。
本研究では,時間的および空間的依存をモデル化する2つの自己教師型学習タスクを設計し,モデルの精度と能力を向上させる。
- 参考スコア(独自算出の注目度): 1.8531577178922987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term traffic prediction has always been a challenging task due to its
dynamic temporal dependencies and complex spatial dependencies. In this paper,
we propose a model that combines hybrid Transformer and spatio-temporal
self-supervised learning. The model enhances its robustness by applying
adaptive data augmentation techniques at the sequence-level and graph-level of
the traffic data. It utilizes Transformer to overcome the limitations of
recurrent neural networks in capturing long-term sequences, and employs
Chebyshev polynomial graph convolution to capture complex spatial dependencies.
Furthermore, considering the impact of spatio-temporal heterogeneity on traffic
speed, we design two self-supervised learning tasks to model the temporal and
spatial heterogeneity, thereby improving the accuracy and generalization
ability of the model. Experimental evaluations are conducted on two real-world
datasets, PeMS04 and PeMS08, and the results are visualized and analyzed,
demonstrating the superior performance of the proposed model.
- Abstract(参考訳): 長期的なトラフィック予測は、その動的時間依存と複雑な空間依存のため、常に困難なタスクである。
本稿では,ハイブリッドトランスフォーマーと時空間自己教師型学習を組み合わせたモデルを提案する。
このモデルは、トラフィックデータのシーケンスレベルとグラフレベルに適応データ拡張技術を適用することにより、ロバスト性を高める。
これは、長期シーケンスのキャプチャにおける再帰的ニューラルネットワークの制限を克服するためにtransformerを使用し、複雑な空間的依存関係をキャプチャするためにchebyshev多項式グラフ畳み込みを使用する。
さらに,時空間不均質性が交通速度に与える影響を考慮して,時間的および空間的不均質性をモデル化する2つの自己教師あり学習タスクを設計し,モデルの精度と一般化能力を向上させる。
実世界の2つのデータセットであるPeMS04とPeMS08で実験を行い、その結果を可視化し分析し、提案モデルの優れた性能を示す。
関連論文リスト
- Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
交通予測はスマートシティの発展において重要な研究分野として浮上している。
最短時間相関のためのネットワークモデリングの最近の進歩は、パフォーマンスのリターンが低下し始めている。
これらの課題に対処するために、時空間グラフ変換器(STGormer)を導入する。
本研究では,その構造に基づく空間符号化手法を2つ設計し,時間位置をバニラ変圧器に統合して時間的トラフィックパターンをキャプチャする。
論文 参考訳(メタデータ) (2024-08-20T13:18:21Z) - A Multi-Channel Spatial-Temporal Transformer Model for Traffic Flow Forecasting [0.0]
交通流予測のための多チャンネル時空間変圧器モデルを提案する。
トラフィックデータの異なるチャネルから結果を抽出することにより、予測の精度を向上させる。
6つの実世界のデータセットの実験結果から,時間モデルにマルチチャネル機構を導入することにより,性能が向上することが示された。
論文 参考訳(メタデータ) (2024-05-10T06:37:07Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
本稿では,ダイナミックスとロバストネスのバランスをとることの課題に対処するため,TrendGCNを提案する。
我々のモデルは、空間的(ノード的に)埋め込みと時間的(時間的に)埋め込みを同時に組み込んで、不均一な空間的・時間的畳み込みを考慮に入れている。
ステップワイドな予測エラーを独立して扱う従来のアプローチと比較して、我々のアプローチはより現実的で堅牢な予測を生み出すことができる。
論文 参考訳(メタデータ) (2022-08-05T09:36:55Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。