論文の概要: MT-HCCAR: Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval
- arxiv url: http://arxiv.org/abs/2401.16520v2
- Date: Fri, 5 Jul 2024 07:32:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 00:13:01.991060
- Title: MT-HCCAR: Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval
- Title(参考訳): MT-HCCAR:階層分類とアテンションに基づくクラウドプロパティ検索のためのマルチタスクディープラーニング
- Authors: Xingyan Li, Andrew M. Sayer, Ian T. Carroll, Xin Huang, Jianwu Wang,
- Abstract要約: 本稿では,マルチタスク学習を用いたエンドツーエンドディープラーニングモデルMT-HCCARを紹介し,クラウドマスキング,クラウドフェーズ検索,COT予測について述べる。
MT-HCCARは階層型分類ネットワーク(HC)と分類支援型注意ベース回帰ネットワーク(CAR)を統合し、クラウドラベリングとCOT予測の精度と堅牢性を高める。
- 参考スコア(独自算出の注目度): 4.24122904716917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of Earth science, effective cloud property retrieval, encompassing cloud masking, cloud phase classification, and cloud optical thickness (COT) prediction, remains pivotal. Traditional methodologies necessitate distinct models for each sensor instrument due to their unique spectral characteristics. Recent strides in Earth Science research have embraced machine learning and deep learning techniques to extract features from satellite datasets' spectral observations. However, prevailing approaches lack novel architectures accounting for hierarchical relationships among retrieval tasks. Moreover, considering the spectral diversity among existing sensors, the development of models with robust generalization capabilities over different sensor datasets is imperative. Surprisingly, there is a dearth of methodologies addressing the selection of an optimal model for diverse datasets. In response, this paper introduces MT-HCCAR, an end-to-end deep learning model employing multi-task learning to simultaneously tackle cloud masking, cloud phase retrieval (classification tasks), and COT prediction (a regression task). The MT-HCCAR integrates a hierarchical classification network (HC) and a classification-assisted attention-based regression network (CAR), enhancing precision and robustness in cloud labeling and COT prediction. Additionally, a comprehensive model selection method rooted in K-fold cross-validation, one standard error rule, and two introduced performance scores is proposed to select the optimal model over three simulated satellite datasets OCI, VIIRS, and ABI. The experiments comparing MT-HCCAR with baseline methods, the ablation studies, and the model selection affirm the superiority and the generalization capabilities of MT-HCCAR.
- Abstract(参考訳): 地球科学の領域では、雲のマスキング、雲相の分類、雲の光学的厚さ(COT)の予測を含む効果的な雲の性質の検索が依然として重要なままである。
従来の手法では、それぞれのセンサ機器の独自のスペクトル特性のために、異なるモデルが必要である。
地球科学研究における最近の進歩は、衛星データセットの分光観測から特徴を抽出する機械学習とディープラーニング技術を採用している。
しかし,検索タスク間の階層的関係を考慮に入れた新しいアーキテクチャは存在しない。
さらに、既存のセンサ間のスペクトルの多様性を考慮すると、異なるセンサデータセットに対する堅牢な一般化機能を持つモデルの開発が不可欠である。
驚くべきことに、多様なデータセットに対する最適なモデルの選択に対処する方法論が数多く存在する。
本稿では,マルチタスク学習を用いてクラウドマスキング,クラウドフェーズ検索(分類タスク),COT予測(回帰タスク)を同時に行うエンドツーエンドディープラーニングモデルMT-HCCARを紹介する。
MT-HCCARは階層型分類ネットワーク(HC)と分類支援型注意ベース回帰ネットワーク(CAR)を統合し、クラウドラベリングとCOT予測の精度と堅牢性を向上させる。
さらに,3つのシミュレーション衛星データセットOCI, VIIRS, ABI上での最適モデルを選択するために,K-foldクロスバリデーションに根ざした包括的モデル選択法,標準誤差規則,および2つの導入性能スコアを提案する。
MT-HCCARをベースライン法,アブレーション法およびモデル選択と比較した実験により,MT-HCCARの優位性と一般化能力が確認された。
関連論文リスト
- Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるサツマイモクローンの選択プロセスの向上を目的とした, 機械学習アルゴリズムの適用について検討する。
本研究は, 高収率, 耐病性, 耐気候性ポテト品種を効率的に同定することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
我々は、セレクタ分類器アーキテクチャを備えた新しいDNNトレーニングおよび推論フレームワークであるDiTMoSを紹介する。
弱いモデルの合成は高い多様性を示すことができ、それらの結合は精度の上限を大幅に高めることができる。
我々は,Nucleo STM32F767ZIボード上にDiTMoSをデプロイし,人間の活動認識,キーワードスポッティング,感情認識のための時系列データセットに基づいて評価する。
論文 参考訳(メタデータ) (2024-03-14T02:11:38Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
自閉症スペクトラム障害(Autistic Spectrum disorder、ASD)は、社会的相互作用、コミュニケーション、反復活動の困難を特徴とする神経疾患である。
本研究は,診断プロセスの強化と自動化を目的として,多様な機械学習手法を用いて重要なASD特性を同定する。
論文 参考訳(メタデータ) (2023-09-20T21:23:37Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction [2.554658234030785]
本研究は,自己指導型コントラスト学習を通じて,マルチモーダル特徴間の地理的関連を学習することを目的とした,新しいアプローチを提案する。
提案手法は、2つの異なる大規模データセットに対して厳密なテストを行っている。
論文 参考訳(メタデータ) (2023-08-07T13:44:44Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Improving Self-Organizing Maps with Unsupervised Feature Extraction [0.0]
自己組織化マップ(SOM)は脳にインスパイアされた神経モデルであり、教師なし学習に非常に有望である。
本稿では,生データの代わりに抽出した特徴を用いてSOM性能を向上させることを提案する。
我々は,SOM分類を+6.09%改善し,教師なし画像分類における最先端性能を得る。
論文 参考訳(メタデータ) (2020-09-04T13:19:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。