論文の概要: LLMs as On-demand Customizable Service
- arxiv url: http://arxiv.org/abs/2401.16577v1
- Date: Mon, 29 Jan 2024 21:24:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 17:06:56.926514
- Title: LLMs as On-demand Customizable Service
- Title(参考訳): オンデマンドカスタマイズサービスとしてのLCM
- Authors: Souvika Sarkar, Mohammad Fakhruddin Babar, Monowar Hasan, Shubhra
Kanti Karmaker (Santu)
- Abstract要約: 階層型分散大言語モデル(LLM)の概念を導入する。
階層型アプローチを導入することで、LLMをカスタマイズ可能なサービスとしてオンデマンドでアクセスできるようにする。
階層型 LLM の概念は,LLM の能力を活用するために,広範かつクラウドソースのユーザ基盤を向上すると考えられる。
- 参考スコア(独自算出の注目度): 8.440060524215378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable language
understanding and generation capabilities. However, training, deploying, and
accessing these models pose notable challenges, including resource-intensive
demands, extended training durations, and scalability issues. To address these
issues, we introduce a concept of hierarchical, distributed LLM architecture
that aims at enhancing the accessibility and deployability of LLMs across
heterogeneous computing platforms, including general-purpose computers (e.g.,
laptops) and IoT-style devices (e.g., embedded systems). By introducing a
"layered" approach, the proposed architecture enables on-demand accessibility
to LLMs as a customizable service. This approach also ensures optimal
trade-offs between the available computational resources and the user's
application needs. We envision that the concept of hierarchical LLM will
empower extensive, crowd-sourced user bases to harness the capabilities of
LLMs, thereby fostering advancements in AI technology in general.
- Abstract(参考訳): 大規模言語モデル (LLM) は、言語理解と生成能力を示す。
しかしながら、これらのモデルのトレーニング、デプロイ、アクセスには、リソース集約的な要求、トレーニング期間の延長、スケーラビリティの問題など、大きな課題が伴う。
これらの問題に対処するために、汎用コンピュータ(ラップトップなど)やIoTスタイルのデバイス(組み込みシステムなど)を含む異種コンピューティングプラットフォームにおけるLLMのアクセシビリティとデプロイ性の向上を目的とした、階層的な分散LLMアーキテクチャの概念を導入する。
階層型アプローチを導入することで、LLMをカスタマイズ可能なサービスとしてオンデマンドでアクセスできるようにする。
このアプローチはまた、利用可能な計算リソースとユーザのアプリケーションニーズとの最適なトレードオフを保証する。
階層的llmの概念は、幅広いクラウドソースのユーザ基盤にllmの能力を活用させ、ai技術全般の進歩を促進することを期待している。
関連論文リスト
- Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - A General-Purpose Device for Interaction with LLMs [3.052172365469752]
本稿では,大規模言語モデル(LLM)と高度なハードウェアの統合について検討する。
我々は,LLMとの対話性の向上を目的とした汎用デバイスの開発に焦点をあてる。
論文 参考訳(メタデータ) (2024-08-02T23:43:29Z) - SoupLM: Model Integration in Large Language and Multi-Modal Models [51.12227693121004]
大規模言語モデル(LLM)の訓練には、かなりの計算資源が必要である。
既存の公開LLMは通常、さまざまなタスクにまたがる、多種多様なプライベートにキュレートされたデータセットで事前トレーニングされる。
論文 参考訳(メタデータ) (2024-07-11T05:38:15Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
大規模言語モデル (LLM) は、様々な応用において人間のような文章を解釈・生成する能力を持つ非常に強力な機器となっている。
しかし、LLMのサイズと複雑さの増大は、トレーニングとデプロイメントの両方において大きな課題をもたらしている。
これらの課題に対処するための最近の進歩と研究の方向性について概観する。
論文 参考訳(メタデータ) (2024-06-16T11:56:50Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities [36.711166825551715]
大規模言語モデル(LLM)は、その優れた理解力と推論能力により、最近かなりの注目を集めている。
本研究は,LLM対応通信網の概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-05-17T14:46:13Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
本稿では,最新のエッジコンピューティングシステムにおいて,Large Language Modelsをどのように導入できるかを,ハードウェア中心のアプローチで検討する。
マイクロレベルのハードウェアベンチマークを行い、FLOPモデルと最先端のデータセンターGPUを比較し、現実的な条件下でのネットワーク利用について検討する。
論文 参考訳(メタデータ) (2023-10-04T20:27:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。