The Detection and Understanding of Fictional Discourse
- URL: http://arxiv.org/abs/2401.16678v1
- Date: Tue, 30 Jan 2024 01:57:17 GMT
- Title: The Detection and Understanding of Fictional Discourse
- Authors: Andrew Piper, Haiqi Zhou
- Abstract summary: We present a variety of classification experiments related to the task of fictional discourse detection.
We utilize a diverse array of datasets, including contemporary professionally published fiction, historical fiction from the Hathi Trust, fanfiction, stories from Reddit, folk tales, GPT-generated stories, and anglophone world literature.
- Score: 0.2900810893770134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a variety of classification experiments related to
the task of fictional discourse detection. We utilize a diverse array of
datasets, including contemporary professionally published fiction, historical
fiction from the Hathi Trust, fanfiction, stories from Reddit, folk tales,
GPT-generated stories, and anglophone world literature. Additionally, we
introduce a new feature set of word "supersenses" that facilitate the goal of
semantic generalization. The detection of fictional discourse can help enrich
our knowledge of large cultural heritage archives and assist with the process
of understanding the distinctive qualities of fictional storytelling more
broadly.
Related papers
- Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
This paper investigates the capability of LLMs in storytelling, focusing on narrative development and plot progression.
We introduce a novel computational framework to analyze narratives through three discourse-level aspects.
We show that explicit integration of discourse features can enhance storytelling, as is demonstrated by over 40% improvement in neural storytelling.
arXiv Detail & Related papers (2024-07-18T08:02:49Z) - LFED: A Literary Fiction Evaluation Dataset for Large Language Models [58.85989777743013]
We collect 95 literary fictions that are either originally written in Chinese or translated into Chinese, covering a wide range of topics across several centuries.
We define a question taxonomy with 8 question categories to guide the creation of 1,304 questions.
We conduct an in-depth analysis to ascertain how specific attributes of literary fictions (e.g., novel types, character numbers, the year of publication) impact LLM performance in evaluations.
arXiv Detail & Related papers (2024-05-16T15:02:24Z) - Where Do People Tell Stories Online? Story Detection Across Online Communities [20.122421671938433]
Story detection in online communities is a challenging task as stories are scattered across communities and interwoven with non-storytelling spans within a single text.
We release the StorySeeker toolkit, including a dataset of 502 Reddit posts and comments, a codebook adapted to the social media context, and models to predict storytelling at the document and span levels.
arXiv Detail & Related papers (2023-11-16T08:42:26Z) - Understanding Social Structures from Contemporary Literary Fiction using
Character Interaction Graph -- Half Century Chronology of Influential Bengali
Writers [2.103087897983347]
Social structures and real-world incidents often influence contemporary literary fiction.
We use character interaction graphs to explore societal inquiries about contemporary culture's impact on the landscape of literary fiction.
arXiv Detail & Related papers (2023-10-25T20:09:14Z) - An Analysis of Reader Engagement in Literary Fiction through Eye
Tracking and Linguistic Features [11.805980147608178]
We analyzed the significance of various qualities of the text in predicting how engaging a reader is likely to find it.
Furthering our understanding of what captivates readers in fiction will help better inform models used in creative narrative generation.
arXiv Detail & Related papers (2023-06-06T22:14:59Z) - TVShowGuess: Character Comprehension in Stories as Speaker Guessing [23.21452223968301]
We propose a new task for assessing machines' skills of understanding fictional characters in narrative stories.
The task, TVShowGuess, builds on the scripts of TV series and takes the form of guessing the anonymous main characters based on the backgrounds of the scenes and the dialogues.
Our human study supports that this form of task covers comprehension of multiple types of character persona, including understanding characters' personalities, facts and memories of personal experience.
arXiv Detail & Related papers (2022-04-16T05:15:04Z) - Computational Lens on Cognition: Study Of Autobiographical Versus
Imagined Stories With Large-Scale Language Models [95.88620740809004]
We study differences in the narrative flow of events in autobiographical versus imagined stories using GPT-3.
We found that imagined stories have higher sequentiality than autobiographical stories.
In comparison to imagined stories, autobiographical stories contain more concrete words and words related to the first person.
arXiv Detail & Related papers (2022-01-07T20:10:47Z) - Paragraph-level Commonsense Transformers with Recurrent Memory [77.4133779538797]
We train a discourse-aware model that incorporates paragraph-level information to generate coherent commonsense inferences from narratives.
Our results show that PARA-COMET outperforms the sentence-level baselines, particularly in generating inferences that are both coherent and novel.
arXiv Detail & Related papers (2020-10-04T05:24:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.