論文の概要: Calibration-then-Calculation: A Variance Reduced Metric Framework in Deep Click-Through Rate Prediction Models
- arxiv url: http://arxiv.org/abs/2401.16692v2
- Date: Sat, 18 May 2024 03:51:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 23:30:28.563554
- Title: Calibration-then-Calculation: A Variance Reduced Metric Framework in Deep Click-Through Rate Prediction Models
- Title(参考訳): Calibration-then-Calculation:Deep Click-Through Rate予測モデルにおける可変化メトリックフレームワーク
- Authors: Yewen Fan, Nian Si, Xiangchen Song, Kun Zhang,
- Abstract要約: ディープラーニングパイプラインのパフォーマンス評価に重点が置かれていない。
大きなデータセットと複雑なモデルの使用が増えると、トレーニングプロセスは一度だけ実行され、その結果は以前のベンチマークと比較される。
トレーニングプロセスを複数回実行するような従来のソリューションは、計算上の制約のため、しばしば実現不可能である。
本稿では,従来からある分散を低減し,この問題に対処するために設計された新しい計量フレームワークCalibrated Loss Metricを紹介する。
- 参考スコア(独自算出の注目度): 16.308958212406583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The adoption of deep learning across various fields has been extensive, yet there is a lack of focus on evaluating the performance of deep learning pipelines. Typically, with the increased use of large datasets and complex models, the training process is run only once and the result is compared to previous benchmarks. This practice can lead to imprecise comparisons due to the variance in neural network evaluation metrics, which stems from the inherent randomness in the training process. Traditional solutions, such as running the training process multiple times, are often infeasible due to computational constraints. In this paper, we introduce a novel metric framework, the Calibrated Loss Metric, designed to address this issue by reducing the variance present in its conventional counterpart. Consequently, this new metric enhances the accuracy in detecting effective modeling improvements. Our approach is substantiated by theoretical justifications and extensive experimental validations within the context of Deep Click-Through Rate Prediction Models.
- Abstract(参考訳): さまざまな分野にわたるディープラーニングの採用は広く行われているが、ディープラーニングパイプラインのパフォーマンス評価に重点が置かれていない。
通常、大規模なデータセットと複雑なモデルの使用が増えると、トレーニングプロセスは一度だけ実行され、その結果は以前のベンチマークと比較される。
このプラクティスは、トレーニングプロセスの固有のランダム性に由来するニューラルネットワーク評価指標のばらつきによる不正確な比較につながる可能性がある。
トレーニングプロセスを複数回実行するような従来のソリューションは、計算上の制約のため、しばしば実現不可能である。
本稿では,従来からある分散を低減し,この問題に対処するために設計された新しい計量フレームワークCalibrated Loss Metricを紹介する。
これにより、効果的なモデリング改善を検出する精度が向上する。
提案手法は,Deep Click-Through Rate Prediction Modelの文脈における理論的正当性および広範囲な実験的検証によって実証された。
関連論文リスト
- Probabilistic Calibration by Design for Neural Network Regression [2.3020018305241337]
本稿では,量子校正トレーニングと呼ばれる新しいエンドツーエンドモデルトレーニング手法を提案する。
57の回帰データセットを含む大規模実験において,本手法の性能を実証した。
論文 参考訳(メタデータ) (2024-03-18T17:04:33Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Bayesian Deep Learning for Remaining Useful Life Estimation via Stein
Variational Gradient Descent [14.784809634505903]
本研究では,スタイン変分勾配勾配を用いたベイズ学習モデルが収束速度と予測性能に対して一貫して優れていたことを示す。
ベイズモデルが提供する不確実性情報に基づく性能向上手法を提案する。
論文 参考訳(メタデータ) (2024-02-02T02:21:06Z) - Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
脳波分類タスクを記述するためのグラフィカルモデルをいくつか提案する。
理想的な訓練シナリオにおいて真であるべき統計的関係を同定する。
我々は、これらの関係を2段階で強制する正規化罰則を設計する。
論文 参考訳(メタデータ) (2023-10-12T23:06:52Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
不確かさの定量化は、信頼性と信頼性のある機械学習における中心的な課題である。
最適正規化推定器のキャリブレーション曲線において, 分類精度とキャリブレーションのトレードオフを示す。
これは経験的ベイズ法とは対照的であり、高次一般化誤差と過度パラメトリゼーションにもかかわらず、我々の設定では十分に校正されていることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:01:08Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Calibrated and Sharp Uncertainties in Deep Learning via Simple Density
Estimation [7.184701179854522]
本稿では,これらの特性の観点からの不確かさを推論し,それを深層学習に適用するための簡単なアルゴリズムを提案する。
本手法はキャリブレーションの最も強い概念である分布キャリブレーションに着目し,低次元密度あるいは量子関数をニューラル推定器に適合させることにより,キャリブレーションを強制する。
実験により,本手法は計算と実装のオーバーヘッドを最小限に抑えながら,いくつかのタスクにおける予測の不確実性を改善できることが判明した。
論文 参考訳(メタデータ) (2021-12-14T06:19:05Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。