StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset
- URL: http://arxiv.org/abs/2407.20545v1
- Date: Tue, 30 Jul 2024 04:57:21 GMT
- Title: StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset
- Authors: Chaofan Huo, Ye Shi, Yuexin Ma, Lan Xu, Jingyi Yu, Jingya Wang,
- Abstract summary: We propose to use the Human-Object Offset between anchors which are densely sampled from the surface of human mesh and object mesh to represent human-object spatial relation.
Based on this representation, we propose Stacked Normalizing Flow (StackFLOW) to infer the posterior distribution of human-object spatial relations from the image.
During the optimization stage, we finetune the human body pose and object 6D pose by maximizing the likelihood of samples.
- Score: 56.71580976007712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling and capturing the 3D spatial arrangement of the human and the object is the key to perceiving 3D human-object interaction from monocular images. In this work, we propose to use the Human-Object Offset between anchors which are densely sampled from the surface of human mesh and object mesh to represent human-object spatial relation. Compared with previous works which use contact map or implicit distance filed to encode 3D human-object spatial relations, our method is a simple and efficient way to encode the highly detailed spatial correlation between the human and object. Based on this representation, we propose Stacked Normalizing Flow (StackFLOW) to infer the posterior distribution of human-object spatial relations from the image. During the optimization stage, we finetune the human body pose and object 6D pose by maximizing the likelihood of samples based on this posterior distribution and minimizing the 2D-3D corresponding reprojection loss. Extensive experimental results show that our method achieves impressive results on two challenging benchmarks, BEHAVE and InterCap datasets.
Related papers
- Monocular Human-Object Reconstruction in the Wild [11.261465071559163]
We present a 2D-supervised method that learns the 3D human-object spatial relation prior purely from 2D images in the wild.
Our method utilizes a flow-based neural network to learn the prior distribution of the 2D human-object keypoint layout and viewports for each image in the dataset.
arXiv Detail & Related papers (2024-07-30T05:45:06Z) - Occlusion-Aware 3D Motion Interpretation for Abnormal Behavior Detection [10.782354892545651]
We present OAD2D, which discriminates against motion abnormalities based on reconstructing 3D coordinates of mesh vertices and human joints from monocular videos.
We reformulate the abnormal posture estimation by coupling it with Motion to Text (M2T) model in which, the VQVAE is employed to quantize motion features.
Our approach demonstrates the robustness of abnormal behavior detection against severe and self-occlusions, as it reconstructs human motion trajectories in global coordinates.
arXiv Detail & Related papers (2024-07-23T18:41:16Z) - Towards Precise 3D Human Pose Estimation with Multi-Perspective Spatial-Temporal Relational Transformers [28.38686299271394]
We propose a framework for 3D sequence-to-sequence (seq2seq) human pose detection.
Firstly, the spatial module represents the human pose feature by intra-image content, while the frame-image relation module extracts temporal relationships.
Our method is evaluated on Human3.6M, a popular 3D human pose detection dataset.
arXiv Detail & Related papers (2024-01-30T03:00:25Z) - Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh
Reconstruction [66.10717041384625]
Zolly is the first 3DHMR method focusing on perspective-distorted images.
We propose a new camera model and a novel 2D representation, termed distortion image, which describes the 2D dense distortion scale of the human body.
We extend two real-world datasets tailored for this task, all containing perspective-distorted human images.
arXiv Detail & Related papers (2023-03-24T04:22:41Z) - Higher-Order Implicit Fairing Networks for 3D Human Pose Estimation [1.1501261942096426]
We introduce a higher-order graph convolutional framework with initial residual connections for 2D-to-3D pose estimation.
Our model is able to capture the long-range dependencies between body joints.
Experiments and ablations studies conducted on two standard benchmarks demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-11-01T13:48:55Z) - UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body
Decoupling 3D Model [58.70130563417079]
We introduce a new 3D human-body model with a series of decoupled parameters that could freely control the generation of the body.
Compared to the existing manually annotated DensePose-COCO dataset, the synthetic UltraPose has ultra dense image-to-surface correspondences without annotation cost and error.
arXiv Detail & Related papers (2021-10-28T16:24:55Z) - D3D-HOI: Dynamic 3D Human-Object Interactions from Videos [49.38319295373466]
We introduce D3D-HOI: a dataset of monocular videos with ground truth annotations of 3D object pose, shape and part motion during human-object interactions.
Our dataset consists of several common articulated objects captured from diverse real-world scenes and camera viewpoints.
We leverage the estimated 3D human pose for more accurate inference of the object spatial layout and dynamics.
arXiv Detail & Related papers (2021-08-19T00:49:01Z) - Learning Transferable Kinematic Dictionary for 3D Human Pose and Shape
Reconstruction [15.586347115568973]
We propose a kinematic dictionary, which explicitly regularizes the solution space of relative 3D rotations of human joints.
Our method achieves end-to-end 3D reconstruction without the need of using any shape annotations during the training of neural networks.
The proposed method achieves competitive results on large-scale datasets including Human3.6M, MPI-INF-3DHP, and LSP.
arXiv Detail & Related papers (2021-04-02T09:24:29Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
We consider the problem of obtaining dense 3D reconstructions of humans from single and partially occluded views.
We suggest that ambiguities can be modelled more effectively by parametrizing the possible body shapes and poses.
We show that our method outperforms alternative approaches in ambiguous pose recovery on standard benchmarks for 3D humans.
arXiv Detail & Related papers (2020-11-02T13:55:31Z) - HMOR: Hierarchical Multi-Person Ordinal Relations for Monocular
Multi-Person 3D Pose Estimation [54.23770284299979]
This paper introduces a novel form of supervision - Hierarchical Multi-person Ordinal Relations (HMOR)
HMOR encodes interaction information as the ordinal relations of depths and angles hierarchically.
An integrated top-down model is designed to leverage these ordinal relations in the learning process.
The proposed method significantly outperforms state-of-the-art methods on publicly available multi-person 3D pose datasets.
arXiv Detail & Related papers (2020-08-01T07:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.