ShaRP: A Novel Feature Importance Framework for Ranking
- URL: http://arxiv.org/abs/2401.16744v3
- Date: Thu, 14 Nov 2024 20:02:05 GMT
- Title: ShaRP: A Novel Feature Importance Framework for Ranking
- Authors: Venetia Pliatsika, Joao Fonseca, Kateryna Akhynko, Ivan Shevchenko, Julia Stoyanovich,
- Abstract summary: We present ShaRP - Shapley for Rankings and Preferences - a framework that explains the contributions of features to different aspects of a ranked outcome.
ShaRP builds on the Quantitative Input Influence framework to compute the contributions of features for multiple - ranking specific - Quantities of Interest.
We show the results of an extensive experimental validation of ShaRP using real and synthetic datasets.
- Score: 6.753981445665063
- License:
- Abstract: Algorithmic decisions in critical domains such as hiring, college admissions, and lending are often based on rankings. Because of the impact these decisions have on individuals, organizations, and population groups, there is a need to understand them: to help individuals improve their position in a ranking, design better ranking procedures, and check whether a procedure is legally compliant. In this paper, we present ShaRP - Shapley for Rankings and Preferences - a framework that explains the contributions of features to different aspects of a ranked outcome and is based on Shapley values. Using ShaRP, we show that even when the scoring function used by an algorithmic ranker is known and linear, the feature weights do not correspond to their Shapley value contribution. The contributions instead depend on the feature distributions and the subtle local interactions between the scoring features. ShaRP builds on the Quantitative Input Influence framework to compute the contributions of features for multiple - ranking specific - Quantities of Interest, including score, rank, pair-wise preference, and top-k. We show the results of an extensive experimental validation of ShaRP using real and synthetic datasets. We demonstrate that feature importance can be computed efficiently, and that ShaRP compares favorably to several prior local feature importance methods, in terms of both generality and quality of explanations. Among our results, we highlight a case study on the CS Rankings dataset. Contrary to expectation, we find that a strong track record in Systems research is much more important than AI research for placing a CS department among the top-10%. ShaRP is available as an open-source library at https://github.com/DataResponsibly/ShaRP and is already used in teaching.
Related papers
- Full Stage Learning to Rank: A Unified Framework for Multi-Stage Systems [40.199257203898846]
We propose an improved ranking principle for multi-stage systems, namely the Generalized Probability Ranking Principle (GPRP)
GPRP emphasizes both the selection bias in each stage of the system pipeline as well as the underlying interest of users.
Our core idea is to first estimate the selection bias in the subsequent stages and then learn a ranking model that best complies with the downstream modules' selection bias.
arXiv Detail & Related papers (2024-05-08T06:35:04Z) - The Distributional Uncertainty of the SHAP score in Explainable Machine Learning [2.655371341356892]
We propose a principled framework for reasoning on SHAP scores under unknown entity population distributions.
We study the basic problems of finding maxima and minima of this function, which allows us to determine tight ranges for the SHAP scores of all features.
arXiv Detail & Related papers (2024-01-23T13:04:02Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
We study the sample efficiency of OPE with human preference and establish a statistical guarantee for it.
By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2023-10-16T16:27:06Z) - TRIVEA: Transparent Ranking Interpretation using Visual Explanation of
Black-Box Algorithmic Rankers [4.336037935247747]
Ranking schemes drive many real-world decisions, like, where to study, whom to hire, what to buy, etc.
At the heart of most of these decisions are opaque ranking schemes, which dictate the ordering of data entities.
We aim to enable transparency in ranking interpretation by using algorithmic rankers that learn from available data and by enabling human reasoning about the learned ranking differences using explainable AI (XAI) methods.
arXiv Detail & Related papers (2023-08-28T16:58:44Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
We propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking.
xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics.
We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories.
arXiv Detail & Related papers (2023-07-27T07:42:44Z) - A novel evaluation methodology for supervised Feature Ranking algorithms [0.0]
This paper proposes a new evaluation methodology for Feature Rankers.
By making use of synthetic datasets, feature importance scores can be known beforehand, allowing more systematic evaluation.
To facilitate large-scale experimentation using the new methodology, a benchmarking framework was built in Python, called fseval.
arXiv Detail & Related papers (2022-07-09T12:00:36Z) - Integrating Rankings into Quantized Scores in Peer Review [61.27794774537103]
In peer review, reviewers are usually asked to provide scores for the papers.
To mitigate this issue, conferences have started to ask reviewers to additionally provide a ranking of the papers they have reviewed.
There are no standard procedure for using this ranking information and Area Chairs may use it in different ways.
We take a principled approach to integrate the ranking information into the scores.
arXiv Detail & Related papers (2022-04-05T19:39:13Z) - Collective eXplainable AI: Explaining Cooperative Strategies and Agent
Contribution in Multiagent Reinforcement Learning with Shapley Values [68.8204255655161]
This study proposes a novel approach to explain cooperative strategies in multiagent RL using Shapley values.
Results could have implications for non-discriminatory decision making, ethical and responsible AI-derived decisions or policy making under fairness constraints.
arXiv Detail & Related papers (2021-10-04T10:28:57Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Feature selection in machine learning: R\'enyi min-entropy vs Shannon
entropy [6.434361163743876]
We propose an algorithm based on a notion of conditional R'enyi min-entropy that has been recently adopted in the field of security and privacy.
In practice, however, it seems that the R'enyi-based algorithm tends to outperform the other one.
arXiv Detail & Related papers (2020-01-27T09:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.