Evaluating Human Alignment and Model Faithfulness of LLM Rationale
- URL: http://arxiv.org/abs/2407.00219v2
- Date: Tue, 22 Oct 2024 05:13:15 GMT
- Title: Evaluating Human Alignment and Model Faithfulness of LLM Rationale
- Authors: Mohsen Fayyaz, Fan Yin, Jiao Sun, Nanyun Peng,
- Abstract summary: We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
- Score: 66.75309523854476
- License:
- Abstract: We study how well large language models (LLMs) explain their generations through rationales -- a set of tokens extracted from the input text that reflect the decision-making process of LLMs. Specifically, we systematically study rationales derived using two approaches: (1) popular prompting-based methods, where prompts are used to guide LLMs in generating rationales, and (2) technical attribution-based methods, which leverage attention or gradients to identify important tokens. Our analysis spans three classification datasets with annotated rationales, encompassing tasks with varying performance levels. While prompting-based self-explanations are widely used, our study reveals that these explanations are not always as "aligned" with the human rationale as attribution-based explanations. Even more so, fine-tuning LLMs to enhance classification task accuracy does not enhance the alignment of prompting-based rationales. Still, it does considerably improve the alignment of attribution-based methods (e.g., InputXGradient). More importantly, we show that prompting-based self-explanation is also less "faithful" than attribution-based explanations, failing to provide a reliable account of the model's decision-making process. To evaluate faithfulness, unlike prior studies that excluded misclassified examples, we evaluate all instances and also examine the impact of fine-tuning and accuracy on alignment and faithfulness. Our findings suggest that inconclusive faithfulness results reported in earlier studies may stem from low classification accuracy. These findings underscore the importance of more rigorous and comprehensive evaluations of LLM rationales.
Related papers
- LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation [28.61326111959728]
Large language models (LLMs) exhibit significant biases in evaluation tasks, particularly in preferentially rating and favoring self-generated content.
Our study addresses this knowledge gap by simulating two critical phases of the retrieval-augmented generation (RAG) framework.
Contrary to previous findings, our results reveal no significant self-preference effect in RAG frameworks.
arXiv Detail & Related papers (2024-10-28T08:32:09Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
We show that large language models (LLMs) display reasoning patterns akin to those observed in humans.
Our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning.
arXiv Detail & Related papers (2024-02-20T12:58:14Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
We introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm.
We collect responses generated from large language models and annotate factuality labels in a fine-grained manner.
Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.
arXiv Detail & Related papers (2023-10-01T17:37:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.