ShaRP: A Novel Feature Importance Framework for Ranking
- URL: http://arxiv.org/abs/2401.16744v4
- Date: Sat, 15 Feb 2025 21:18:31 GMT
- Title: ShaRP: A Novel Feature Importance Framework for Ranking
- Authors: Venetia Pliatsika, Joao Fonseca, Kateryna Akhynko, Ivan Shevchenko, Julia Stoyanovich,
- Abstract summary: We argue that explainability methods for classification and regression, such as SHAP, are insufficient for ranking tasks.<n>We present ShaRP-Shapley Values for Rankings and Preferences, a framework that explains the contributions of features to various aspects of a ranked outcome.<n>ShaRP computes feature contributions for various ranking-specific profit functions, such as rank and top-k, and also includes a novel Shapley value-based method for explaining pairwise preference outcomes.
- Score: 6.753981445665063
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Algorithmic decisions in critical domains such as hiring, college admissions, and lending are often based on rankings. Given the impact of these decisions on individuals, organizations, and population groups, it is essential to understand them-to help individuals improve their ranking position, design better ranking procedures, and ensure legal compliance. In this paper, we argue that explainability methods for classification and regression, such as SHAP, are insufficient for ranking tasks, and present ShaRP-Shapley Values for Rankings and Preferences-a framework that explains the contributions of features to various aspects of a ranked outcome. ShaRP computes feature contributions for various ranking-specific profit functions, such as rank and top-k, and also includes a novel Shapley value-based method for explaining pairwise preference outcomes. We provide a flexible implementation of ShaRP, capable of efficiently and comprehensively explaining ranked and pairwise outcomes over tabular data, in score-based ranking and learning-to-rank tasks. Finally, to evaluate ShaRP and compare it with other explainability methods, we define ranking-specific explanation metrics and conduct an extensive experimental analysis, demonstrating the framework's flexibility and efficiency.
Related papers
- Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Full Stage Learning to Rank: A Unified Framework for Multi-Stage Systems [40.199257203898846]
We propose an improved ranking principle for multi-stage systems, namely the Generalized Probability Ranking Principle (GPRP)
GPRP emphasizes both the selection bias in each stage of the system pipeline as well as the underlying interest of users.
Our core idea is to first estimate the selection bias in the subsequent stages and then learn a ranking model that best complies with the downstream modules' selection bias.
arXiv Detail & Related papers (2024-05-08T06:35:04Z) - RankSHAP: Shapley Value Based Feature Attributions for Learning to Rank [28.438428292619577]
We adopt an axiomatic game-theoretic approach, popular in the feature attribution community, to identify a set of fundamental axioms that every ranking-based feature attribution method should satisfy.
We then introduce Rank-SHAP, extending classical Shapley values to ranking.
We also perform an axiomatic analysis of existing rank attribution algorithms to determine their compliance with our proposed axioms.
arXiv Detail & Related papers (2024-05-03T04:43:24Z) - RankingSHAP -- Listwise Feature Attribution Explanations for Ranking Models [48.895510739010355]
We present three key contributions to address this gap.
First, we rigorously define listwise feature attribution for ranking models.
Second, we introduce RankingSHAP, extending the popular SHAP framework to accommodate listwise ranking attribution.
Third, we propose two novel evaluation paradigms for assessing the faithfulness of attributions in learning-to-rank models.
arXiv Detail & Related papers (2024-03-24T10:45:55Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - The Distributional Uncertainty of the SHAP score in Explainable Machine Learning [2.655371341356892]
We propose a principled framework for reasoning on SHAP scores under unknown entity population distributions.
We study the basic problems of finding maxima and minima of this function, which allows us to determine tight ranges for the SHAP scores of all features.
arXiv Detail & Related papers (2024-01-23T13:04:02Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
We study the sample efficiency of OPE with human preference and establish a statistical guarantee for it.
By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2023-10-16T16:27:06Z) - TRIVEA: Transparent Ranking Interpretation using Visual Explanation of
Black-Box Algorithmic Rankers [4.336037935247747]
Ranking schemes drive many real-world decisions, like, where to study, whom to hire, what to buy, etc.
At the heart of most of these decisions are opaque ranking schemes, which dictate the ordering of data entities.
We aim to enable transparency in ranking interpretation by using algorithmic rankers that learn from available data and by enabling human reasoning about the learned ranking differences using explainable AI (XAI) methods.
arXiv Detail & Related papers (2023-08-28T16:58:44Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
We propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking.
xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics.
We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories.
arXiv Detail & Related papers (2023-07-27T07:42:44Z) - Explainable Disparity Compensation for Efficient Fair Ranking [0.3759936323189418]
Ranking functions that are used in decision systems often produce disparate results for different populations because of bias in the underlying data.
Recent compensatory measures have mostly focused on opaque transformations of the ranking functions to satisfy fairness guarantees.
In this paper we propose easily explainable data-driven compensatory measures for ranking functions.
arXiv Detail & Related papers (2023-07-25T09:12:50Z) - Learning List-Level Domain-Invariant Representations for Ranking [59.3544317373004]
We propose list-level alignment -- learning domain-invariant representations at the higher level of lists.
The benefits are twofold: it leads to the first domain adaptation generalization bound for ranking, in turn providing theoretical support for the proposed method.
arXiv Detail & Related papers (2022-12-21T04:49:55Z) - A novel evaluation methodology for supervised Feature Ranking algorithms [0.0]
This paper proposes a new evaluation methodology for Feature Rankers.
By making use of synthetic datasets, feature importance scores can be known beforehand, allowing more systematic evaluation.
To facilitate large-scale experimentation using the new methodology, a benchmarking framework was built in Python, called fseval.
arXiv Detail & Related papers (2022-07-09T12:00:36Z) - Integrating Rankings into Quantized Scores in Peer Review [61.27794774537103]
In peer review, reviewers are usually asked to provide scores for the papers.
To mitigate this issue, conferences have started to ask reviewers to additionally provide a ranking of the papers they have reviewed.
There are no standard procedure for using this ranking information and Area Chairs may use it in different ways.
We take a principled approach to integrate the ranking information into the scores.
arXiv Detail & Related papers (2022-04-05T19:39:13Z) - Collective eXplainable AI: Explaining Cooperative Strategies and Agent
Contribution in Multiagent Reinforcement Learning with Shapley Values [68.8204255655161]
This study proposes a novel approach to explain cooperative strategies in multiagent RL using Shapley values.
Results could have implications for non-discriminatory decision making, ethical and responsible AI-derived decisions or policy making under fairness constraints.
arXiv Detail & Related papers (2021-10-04T10:28:57Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Feature selection in machine learning: R\'enyi min-entropy vs Shannon
entropy [6.434361163743876]
We propose an algorithm based on a notion of conditional R'enyi min-entropy that has been recently adopted in the field of security and privacy.
In practice, however, it seems that the R'enyi-based algorithm tends to outperform the other one.
arXiv Detail & Related papers (2020-01-27T09:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.