論文の概要: BoostDream: Efficient Refining for High-Quality Text-to-3D Generation from Multi-View Diffusion
- arxiv url: http://arxiv.org/abs/2401.16764v3
- Date: Tue, 17 Sep 2024 16:28:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 22:41:00.708845
- Title: BoostDream: Efficient Refining for High-Quality Text-to-3D Generation from Multi-View Diffusion
- Title(参考訳): BoostDream: マルチビュー拡散による高品質テキスト・ツー・3D生成のための効率的な精錬
- Authors: Yonghao Yu, Shunan Zhu, Huai Qin, Haorui Li,
- Abstract要約: BoostDreamは、粗い3D資産を高品質に変換するために設計された、高効率なプラグアンドプレイ3D精製手法である。
本研究では, フィードフォワード生成により得られた3次元アセットと異なる表現に適合する3次元モデル蒸留を導入する。
新たな多視点SDS損失を設計し、多視点認識2次元拡散モデルを用いて3次元資産を洗練させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Witnessing the evolution of text-to-image diffusion models, significant strides have been made in text-to-3D generation. Currently, two primary paradigms dominate the field of text-to-3D: the feed-forward generation solutions, capable of swiftly producing 3D assets but often yielding coarse results, and the Score Distillation Sampling (SDS) based solutions, known for generating high-fidelity 3D assets albeit at a slower pace. The synergistic integration of these methods holds substantial promise for advancing 3D generation techniques. In this paper, we present BoostDream, a highly efficient plug-and-play 3D refining method designed to transform coarse 3D assets into high-quality. The BoostDream framework comprises three distinct processes: (1) We introduce 3D model distillation that fits differentiable representations from the 3D assets obtained through feed-forward generation. (2) A novel multi-view SDS loss is designed, which utilizes a multi-view aware 2D diffusion model to refine the 3D assets. (3) We propose to use prompt and multi-view consistent normal maps as guidance in refinement.Our extensive experiment is conducted on different differentiable 3D representations, revealing that BoostDream excels in generating high-quality 3D assets rapidly, overcoming the Janus problem compared to conventional SDS-based methods. This breakthrough signifies a substantial advancement in both the efficiency and quality of 3D generation processes.
- Abstract(参考訳): テキストから画像への拡散モデルの進化を目撃し、テキストから3D生成において重要な進歩を遂げた。
現在、テキストから3Dへの2つの主要なパラダイムは、3D資産を迅速に生成できるフィードフォワード生成ソリューションと、高忠実度3D資産を遅いペースで生成することで知られるスコア蒸留サンプリング(SDS)ベースのソリューションである。
これらの手法の相乗的統合は、3次元生成技術の進歩に大きく貢献する。
本稿では,粗い3Dアセットを高品質に変換する高効率なプラグアンドプレイ3D精製法BoostDreamを提案する。
BoostDream フレームワークは,(1) フィードフォワード生成により得られた3次元資産と異なる表現に適合する3次元モデル蒸留を導入する。
2) 新たな多視点SDS損失を設計し, マルチビュー対応2次元拡散モデルを用いて3次元資産を改良する。
以上の結果から,従来のSDS法と比較して,BoostDreamがJanus問題を克服し,高品質な3Dアセットを迅速に生成する上で優れていることが判明した。
このブレークスルーは、3D生成プロセスの効率性と品質の両面で大きな進歩を示している。
関連論文リスト
- VividDreamer: Towards High-Fidelity and Efficient Text-to-3D Generation [69.68568248073747]
拡散に基づく3次元生成タスクにおいて, ポーズ依存型連続蒸留サンプリング (PCDS) を提案する。
PCDSは拡散軌道内でポーズ依存整合関数を構築し、最小サンプリングステップで真の勾配を近似することができる。
そこで我々は,まず1ステップのPCDSを用いて3Dオブジェクトの基本構造を作成し,さらに徐々にPCDSのステップを拡大して細かな細部を生成する,粗大な最適化手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:21:52Z) - DiffTF++: 3D-aware Diffusion Transformer for Large-Vocabulary 3D Generation [53.20147419879056]
拡散型フィードフォワードフレームワークを導入し,単一モデルで課題に対処する。
TransFormerを用いた3D対応拡散モデルを構築し,より強力な3D生成,すなわちDiffTF++を提案する。
ShapeNetとOmniObject3Dの実験は、提案したモジュールの有効性を確実に実証している。
論文 参考訳(メタデータ) (2024-05-13T17:59:51Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
本稿では,LN3Diffと呼ばれる新しいフレームワークを導入し,統一された3次元拡散パイプラインに対処する。
提案手法では,3次元アーキテクチャと変分オートエンコーダを用いて,入力画像を構造化されたコンパクトな3次元潜在空間に符号化する。
3次元生成のためのShapeNetの最先端性能を実現し,モノクロ3次元再構成と条件付き3次元生成において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-18T17:54:34Z) - 3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors [85.11117452560882]
本稿では,2段階のテキスト・ツー・3D生成システムである3DTopiaについて述べる。
3次元データから直接学習される3次元拡散の第1段階のサンプルは、テキスト条件付き3次元潜伏拡散モデルを用いており、高速なプロトタイピングのための粗い3次元サンプルを迅速に生成する。
第2段階は2次元拡散前処理を利用して、粗い3次元モデルのテクスチャを第1段階からさらに洗練し、高品質なテクスチャ生成のための潜時空間と画素空間の最適化からなる。
論文 参考訳(メタデータ) (2024-03-04T17:26:28Z) - CAD: Photorealistic 3D Generation via Adversarial Distillation [28.07049413820128]
本稿では,事前学習した拡散モデルを用いた3次元合成のための新しい学習パラダイムを提案する。
提案手法は,1つの画像に条件付された高忠実かつ光リアルな3Dコンテンツの生成を解放し,プロンプトを行う。
論文 参考訳(メタデータ) (2023-12-11T18:59:58Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2次元拡散モデルでは、3次元データなしで優れた一般化と豊富な詳細を実現する蒸留手法が見つかる。
提案するSherpa3Dは,高忠実度,一般化性,幾何整合性を同時に実現する新しいテキスト・ツー・3Dフレームワークである。
論文 参考訳(メタデータ) (2023-12-11T18:59:18Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。