Energy-conserving equivariant GNN for elasticity of lattice architected metamaterials
- URL: http://arxiv.org/abs/2401.16914v2
- Date: Wed, 20 Mar 2024 10:37:10 GMT
- Title: Energy-conserving equivariant GNN for elasticity of lattice architected metamaterials
- Authors: Ivan Grega, Ilyes Batatia, Gábor Csányi, Sri Karlapati, Vikram S. Deshpande,
- Abstract summary: We generate a big dataset of structure-property relationships for strut-based lattices.
The dataset is made available to the community which can fuel the development of methods anchored in physical principles.
We present a higher-order GNN model trained on this dataset.
- Score: 3.7852720324045444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Similarity Equivariant Graph Neural Networks for Homogenization of Metamaterials [3.6443770850509423]
Soft, porous mechanical metamaterials exhibit pattern transformations that may have important applications in soft robotics, sound reduction and biomedicine.
We develop a machine learning-based approach that scales favorably to serve as a surrogate model.
We show that this network is more accurate and data-efficient than graph neural networks with fewer symmetries.
arXiv Detail & Related papers (2024-04-26T12:30:32Z) - On the Completeness of Invariant Geometric Deep Learning Models [22.43250261702209]
Invariant models are capable of generating meaningful geometric representations by leveraging informative geometric features in point clouds.
We show that GeoNGNN, the geometric counterpart of one of the simplest subgraph graph neural networks (subgraph GNNs), can effectively break these corner cases' symmetry.
By leveraging GeoNGNN as a theoretical tool, we further prove that: 1) most subgraph GNNs developed in traditional graph learning can be seamlessly extended to geometric scenarios with E(3)-completeness.
arXiv Detail & Related papers (2024-02-07T13:32:53Z) - Stress representations for tensor basis neural networks: alternative
formulations to Finger-Rivlin-Ericksen [0.0]
We survey a variety of tensor neural network models for modeling hyperelastic deformation materials in a finite context.
We compare potential-based and coefficient-based approaches, as well as different calibration techniques.
Nine variants are tested against both noisy and noiseless datasets for three different materials.
arXiv Detail & Related papers (2023-08-21T23:28:26Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
arXiv Detail & Related papers (2021-02-19T10:25:33Z) - Lossless Compression of Structured Convolutional Models via Lifting [14.63152363481139]
We introduce a simple and efficient technique to detect the symmetries and compress the neural models without loss of any information.
We demonstrate through experiments that such compression can lead to significant speedups of structured convolutional models.
arXiv Detail & Related papers (2020-07-13T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.