Learning Properties of Quantum States Without the I.I.D. Assumption
- URL: http://arxiv.org/abs/2401.16922v2
- Date: Thu, 14 Nov 2024 17:23:57 GMT
- Title: Learning Properties of Quantum States Without the I.I.D. Assumption
- Authors: Omar Fawzi, Richard Kueng, Damian Markham, Aadil Oufkir,
- Abstract summary: We develop a framework for learning properties of quantum states beyond the assumption of independent and identically distributed (i.i.d.) input states.
We use rigorous quantum information theory to prove our main results.
- Score: 7.537220883022466
- License:
- Abstract: We develop a framework for learning properties of quantum states beyond the assumption of independent and identically distributed (i.i.d.) input states. We prove that, given any learning problem (under reasonable assumptions), an algorithm designed for i.i.d. input states can be adapted to handle input states of any nature, albeit at the expense of a polynomial increase in training data size (aka sample complexity). Importantly, this polynomial increase in sample complexity can be substantially improved to polylogarithmic if the learning algorithm in question only requires non-adaptive, single-copy measurements. Among other applications, this allows us to generalize the classical shadow framework to the non-i.i.d. setting while only incurring a comparatively small loss in sample efficiency. We use rigorous quantum information theory to prove our main results. In particular, we leverage permutation invariance and randomized single-copy measurements to derive a new quantum de Finetti theorem that mainly addresses measurement outcome statistics and, in turn, scales much more favorably in Hilbert space dimension.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Non-Unitary Quantum Machine Learning [0.0]
We introduce several probabilistic quantum algorithms that overcome the normal unitary restrictions in quantum machine learning.
We show that residual connections between layers of a variational ansatz can prevent barren plateaus in models which would otherwise contain them.
We also demonstrate a novel rotationally invariant encoding for point cloud data via Schur-Weyl duality.
arXiv Detail & Related papers (2024-05-27T17:42:02Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Lower bounds for learning quantum states with single-copy measurements [3.2590610391507444]
We study the problems of quantum tomography and shadow tomography using measurements performed on individual copies of an unknown $d$-dimensional state.
In particular, this rigorously establishes the optimality of the folklore Pauli tomography" algorithm in terms of its complexity.
arXiv Detail & Related papers (2022-07-29T02:26:08Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Simpler Proofs of Quantumness [16.12500804569801]
A proof of quantumness is a method for provably demonstrating that a quantum device can perform computational tasks that a classical device cannot.
There are currently three approaches for exhibiting proofs of quantumness.
We give a two-message (challenge-response) proof of quantumness based on any trapdoor claw-free function.
arXiv Detail & Related papers (2020-05-11T01:31:18Z) - Statistical Limits of Supervised Quantum Learning [90.0289160657379]
We show that if the bound on the accuracy is taken into account, quantum machine learning algorithms for supervised learning cannot achieve polylogarithmic runtimes in the input dimension.
We conclude that, when no further assumptions on the problem are made, quantum machine learning algorithms for supervised learning can have at most speedups over efficient classical algorithms.
arXiv Detail & Related papers (2020-01-28T17:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.