Universal and Efficient Quantum State Verification via Schmidt Decomposition and Mutually Unbiased Bases
- URL: http://arxiv.org/abs/2506.19809v1
- Date: Tue, 24 Jun 2025 17:22:01 GMT
- Title: Universal and Efficient Quantum State Verification via Schmidt Decomposition and Mutually Unbiased Bases
- Authors: Yunting Li, Huangjun Zhu,
- Abstract summary: We propose a universal protocol to verify arbitrary multipartite pure quantum states.<n>We establish a universal upper bound on the sample complexity that is independent of the local dimensions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient verification of multipartite quantum states is crucial to many applications in quantum information processing. By virtue of Schmidt decomposition and mutually unbiased bases, here we propose a universal protocol to verify arbitrary multipartite pure quantum states using adaptive local projective measurements. Moreover, we establish a universal upper bound on the sample complexity that is independent of the local dimensions. Numerical calculations further indicate that Haar-random pure states can be verified with a constant sample cost, irrespective of the qudit number and local dimensions, even in the adversarial scenario in which the source cannot be trusted. As alternatives, we provide multiple simpler variants that can achieve similar high efficiencies.
Related papers
- Tensor Cross Interpolation of Purities in Quantum Many-Body Systems [0.0]
In quantum many-body systems the exponential scaling of the Hilbert space with the number of degrees of freedom renders a complete state characterization.<n>Recently, a compact way of storing subregions' purities by encoding them as amplitudes of a fictitious quantum wave function, known as entanglement feature, was proposed.<n>In this work, we demonstrate that the entanglement feature can be efficiently defining using only a amount of samples in the number of degrees of freedom.
arXiv Detail & Related papers (2025-03-21T15:33:00Z) - Reducing the sampling complexity of energy estimation in quantum many-body systems using empirical variance information [45.18582668677648]
We consider the problem of estimating the energy of a quantum state preparation for a given Hamiltonian in Pauli decomposition.<n>We construct an adaptive estimator using the state's actual variance.
arXiv Detail & Related papers (2025-02-03T19:00:01Z) - Bounding the Sample Fluctuation for Pure States Certification with Local Random Measurement [4.923287660970805]
Recent advancements in randomized measurement techniques have provided fresh insights in this area.
We investigate the fundamental properties of schemes that certify pure quantum states through random local Haar measurements.
Our results unveil the intrinsic interplay between operator complexity and the efficiency of quantum algorithms, serving as an obstacle to local certification of pure states with long-range entanglement.
arXiv Detail & Related papers (2024-10-22T02:26:44Z) - Machine-learning certification of multipartite entanglement for noisy quantum hardware [1.204553980682492]
Entanglement is a fundamental aspect of quantum physics, both conceptually and for its many applications.
We develop a certification pipeline that feeds statistics of random local measurements into a non-linear dimensionality reduction algorithm.
We verify the accuracy of its predictions on simulated test data, and apply it to states prepared on IBM quantum computing hardware.
arXiv Detail & Related papers (2024-08-22T12:47:58Z) - Experimental Quantum State Certification by Actively Sampling Photonic Entangled States [0.0]
Entangled quantum states are essential ingredients for many quantum technologies, but they must be validated before they are used.<n>Most existing approaches are based on preparing an ensemble of nominally identical and independent (IID) quantum states, and then measuring each copy of the ensemble.<n>We experimentally implement quantum state certification (QSC) proposed by Gocanin textitet al., which measures only a subset of the ensemble.<n>We use active optical switches to randomly sample from sources of two-photon Bell states and three-photon GHZ states, reporting statistically-sound fidelities in
arXiv Detail & Related papers (2024-07-18T21:54:13Z) - Learning Properties of Quantum States Without the I.I.D. Assumption [7.537220883022466]
We develop a framework for learning properties of quantum states beyond the assumption of independent and identically distributed (i.i.d.) input states.
We use rigorous quantum information theory to prove our main results.
arXiv Detail & Related papers (2024-01-30T11:45:38Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.