論文の概要: Multilayer Graph Approach to Deep Subspace Clustering
- arxiv url: http://arxiv.org/abs/2401.17033v1
- Date: Tue, 30 Jan 2024 14:09:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 14:56:28.375503
- Title: Multilayer Graph Approach to Deep Subspace Clustering
- Title(参考訳): 多層グラフによる深部部分空間クラスタリング
- Authors: Lovro Sindi\v{c}i\'c, Ivica Kopriva
- Abstract要約: 自己表現型モデル学習表現行列に基づくディープサブスペースクラスタリング(DSC)ネットワークは、完全に接続されたネットワークで実装されることが多い。
本稿では,入力データを含むエンコーダネットワークの全層から学習した表現から,選択した線形部分空間クラスタリングアルゴリズムを用いて表現を学習する。
ベースラインモデルとして2つのDSCネットワークを持つ4つのよく知られたデータセットに対して,提案手法を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep subspace clustering (DSC) networks based on self-expressive model learn
representation matrix, often implemented in terms of fully connected network,
in the embedded space. After the learning is finished, representation matrix is
used by spectral clustering module to assign labels to clusters. However, such
approach ignores complementary information that exist in other layers of the
encoder (including the input data themselves). Herein, we apply selected linear
subspace clustering algorithm to learn representation matrices from
representations learned by all layers of encoder network including the input
data. Afterward, we learn a multilayer graph that in a multi-view like manner
integrates information from graph Laplacians of all used layers. That improves
further performance of selected DSC network. Furthermore, we also provide
formulation of our approach to cluster out-of-sample/test data points. We
validate proposed approach on four well-known datasets with two DSC networks as
baseline models. In almost all the cases, proposed approach achieved
statistically significant improvement in three performance metrics. MATLAB code
of proposed algorithm is posted on https://github.com/lovro-sinda/MLG-DSC.
- Abstract(参考訳): 自己表現型モデル学習表現行列に基づくディープサブスペースクラスタリング(DSC)ネットワークは、組み込み空間において完全に接続されたネットワークでしばしば実装される。
学習が完了すると、スペクトルクラスタリングモジュールによって、クラスタにラベルを割り当てるために表現行列が使用される。
しかし、この手法はエンコーダの他の層(入力データ自身を含む)に存在する相補的な情報を無視する。
本稿では,入力データを含むエンコーダネットワークの全レイヤで学習した表現から表現行列を学ぶために,選択線形部分空間クラスタリングアルゴリズムを適用する。
その後、多層グラフを多層的に学習し、すべての使用層からなるグラフラプラシアンからの情報を統合する。
これにより、選択したDSCネットワークの性能が向上する。
さらに,クラスタアウトオブサンプル/テストデータポイントへのアプローチの定式化も行う。
ベースラインモデルとして2つのDSCネットワークを持つ4つのよく知られたデータセットに対して,提案手法を検証した。
ほぼすべてのケースにおいて、提案手法は3つのパフォーマンス指標において統計的に有意に改善された。
提案アルゴリズムのMATLABコードはhttps://github.com/lovro-sinda/MLG-DSCに掲載されている。
関連論文リスト
- Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - A network community detection method with integration of data from
multiple layers and node attributes [0.0]
列がノードに対応し、列がデータ項目に対応しているデータマトリックスにおいて、ネットワークデータを単純な方法で表現する方法を提案する。
データ行列を圧縮するためには、非平方行列に対する正規分解法と呼ばれる拡張を提案する。
提案手法を,インターネットの自律システムグラフとワールドエアライングラフの2つの実ネットワークで説明する。
論文 参考訳(メタデータ) (2023-05-22T13:15:36Z) - Deep Multi-View Subspace Clustering with Anchor Graph [11.291831842959926]
アンカーグラフ(DMCAG)を用いた深層多視点サブスペースクラスタリング手法を提案する。
DMCAGは各ビューの埋め込み機能を独立して学習し、サブスペース表現を得るために使用される。
本手法は他の最先端手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2023-05-11T16:17:43Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - DRBM-ClustNet: A Deep Restricted Boltzmann-Kohonen Architecture for Data
Clustering [0.0]
DRBM-ClustNetと呼ばれるデータクラスタリングのためのベイジアンDeep Restricted Boltzmann-Kohonenアーキテクチャを提案する。
ラベルなしデータの処理は、非線形分離可能なデータセットの効率的なクラスタリングのために、3段階に分けて行われる。
このフレームワークはクラスタリングの精度に基づいて評価され、他の最先端クラスタリング手法と比較してランク付けされる。
論文 参考訳(メタデータ) (2022-05-13T15:12:18Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - Overcomplete Deep Subspace Clustering Networks [80.16644725886968]
4つのベンチマークデータセットの実験結果から,クラスタリング誤差の観点から,DSCや他のクラスタリング手法に対する提案手法の有効性が示された。
また,本手法は,最高の性能を得るために事前学習を中止する点にDSCほど依存せず,騒音にも頑健である。
論文 参考訳(メタデータ) (2020-11-16T22:07:18Z) - Multi-view Subspace Clustering Networks with Local and Global Graph
Information [19.64977233324484]
本研究の目的は、異なる分野や測定値から収集されたデータの基盤となるグループ構造を検討することである。
我々は,MSCNLGと呼ばれる局所グラフ情報とグローバルグラフ情報を備えた,新しいマルチビューサブスペースクラスタリングネットワークを提案する。
エンド・ツー・エンドのトレーニング可能なフレームワークとして、提案手法は複数のビューの貴重な情報を完全に調査する。
論文 参考訳(メタデータ) (2020-10-19T09:00:19Z) - AutoEmbedder: A semi-supervised DNN embedding system for clustering [0.0]
本稿では,高次元データをクラスタリング可能な埋め込みポイントにダウンサンプリングする,AutoEmbedderという新しい埋め込みシステムを提案する。
トレーニングプロセスは半教師付きで、Siameseネットワークアーキテクチャを使用して、機能学習フェーズにおけるペアワイズ制約損失を計算します。
論文 参考訳(メタデータ) (2020-07-11T19:00:45Z) - Multi-view Deep Subspace Clustering Networks [64.29227045376359]
マルチビューサブスペースクラスタリングは、相補的な情報の複数のビューを融合することによって、データ固有の構造を発見することを目的としている。
本稿では,MvDSCN(Multi-view Deep Subspace Clustering Networks)を提案する。
MvDSCNはクラスタリング性能を高めるために複数のバックボーンを統合する。
論文 参考訳(メタデータ) (2019-08-06T06:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。