論文の概要: NormEnsembleXAI: Unveiling the Strengths and Weaknesses of XAI Ensemble
Techniques
- arxiv url: http://arxiv.org/abs/2401.17200v1
- Date: Tue, 30 Jan 2024 17:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 13:54:01.627571
- Title: NormEnsembleXAI: Unveiling the Strengths and Weaknesses of XAI Ensemble
Techniques
- Title(参考訳): NormEnsembleXAI: XAI Ensemble Techniqueの強度と弱さを明らかにする
- Authors: Weronika Hryniewska-Guzik, Bartosz Sawicki, Przemys{\l}aw Biecek
- Abstract要約: 本稿では,説明可能な人工知能(XAI)アンサンブル手法の包括的解析について述べる。
我々は,最小,最大,平均の関数と正規化手法を併用して解釈性を向上させる新しいアンサンブル手法であるNormEnsembleXAIを導入する。
我々は、XAIアンサンブルの実践的実装を容易にし、透過的で解釈可能なディープラーニングモデルの導入を促進するライブラリを提供する。
- 参考スコア(独自算出の注目度): 5.524804393257921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comprehensive comparative analysis of explainable
artificial intelligence (XAI) ensembling methods. Our research brings three
significant contributions. Firstly, we introduce a novel ensembling method,
NormEnsembleXAI, that leverages minimum, maximum, and average functions in
conjunction with normalization techniques to enhance interpretability.
Secondly, we offer insights into the strengths and weaknesses of XAI ensemble
methods. Lastly, we provide a library, facilitating the practical
implementation of XAI ensembling, thus promoting the adoption of transparent
and interpretable deep learning models.
- Abstract(参考訳): 本稿では,説明可能な人工知能(XAI)の総合的な比較分析を行う。
私たちの研究は3つの重要な貢献をもたらす。
まず, 最小, 最大, 平均関数を活用し, 可読性を高めるための正規化手法を併用した, 新たなナンセンスリング手法, normensemblexaiを提案する。
第2に,XAIアンサンブル手法の長所と短所について考察する。
最後に,xai ensemblingの実用的な実装を容易にするライブラリを提供し,透明で解釈可能なディープラーニングモデルの採用を促進する。
関連論文リスト
- SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals [0.0]
本稿では,新たな評価手法であるSCENE(Soft Counterfactual Evaluation for Natural Language Explainability)を紹介する。
トークンベースの置換に焦点を当てることで、SCENEは文脈的に適切で意味論的に意味のあるソフトカウンタブルを作成する。
SCENEは様々なXAI技法の強みと限界についての貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-08-08T16:36:24Z) - Applications of Explainable artificial intelligence in Earth system science [12.454478986296152]
このレビューは、説明可能なAI(XAI)の基礎的な理解を提供することを目的としている。
XAIはモデルをより透明にする強力なツールセットを提供する。
我々は、地球系科学(ESS)において、XAIが直面する4つの重要な課題を識別する。
AIモデルは未知を探索し、XAIは説明を提供することでギャップを埋める。
論文 参考訳(メタデータ) (2024-06-12T15:05:29Z) - EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods [1.6383837447674294]
本稿では、初期ベンチマークプラットフォームにおいて、様々なベンチマークデータセットと新しいパフォーマンス指標をまとめる。
我々のデータセットには、クラス条件の特徴に対する真実の説明が組み込まれています。
このプラットフォームは、それらが生成する説明の品質において、ポストホックなXAIメソッドのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-05-20T14:16:06Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAIはLarge Language Models (LLM)に拡張されている
本稿では,XAIがLLMやAIシステムにどのようなメリットをもたらすかを分析する。
10の戦略を導入し、それぞれに重要なテクニックを導入し、関連する課題について議論します。
論文 参考訳(メタデータ) (2024-03-13T20:25:27Z) - XAI for All: Can Large Language Models Simplify Explainable AI? [0.0699049312989311]
x-[plAIn]"は、カスタムのLarge Language Modelを通じて、XAIをより広く利用できるようにする新しいアプローチである。
我々の目標は、様々なXAI手法の明確で簡潔な要約を生成できるモデルを設計することであった。
使用事例調査の結果から,本モデルは理解し易く,観衆特有の説明を提供するのに有効であることが示された。
論文 参考訳(メタデータ) (2024-01-23T21:47:12Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - Learning Symbolic Rules over Abstract Meaning Representations for
Textual Reinforcement Learning [63.148199057487226]
本稿では,汎用的な意味一般化とルール誘導システムを組み合わせて,解釈可能なルールをポリシーとして学習するモジュール型 NEuroSymbolic Textual Agent (NESTA) を提案する。
実験の結果,NESTA法は,未確認テストゲームや少ないトレーニングインタラクションから学習することで,深層強化学習技術よりも優れることがわかった。
論文 参考訳(メタデータ) (2023-07-05T23:21:05Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Rational Shapley Values [0.0]
ポストホックな説明可能な人工知能(XAI)の一般的なツールは、文脈に敏感であるか、要約が難しい。
非互換なアプローチを合成し拡張する新しいXAI手法である、エミュレーション型シェープリー値を導入する。
私は、意思決定理論や因果モデリングのツールを活用して、XAIにおける多くの既知の課題を解決する実用的なアプローチを定式化し、実装します。
論文 参考訳(メタデータ) (2021-06-18T15:45:21Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。