Achieving More Human Brain-Like Vision via Human EEG Representational Alignment
- URL: http://arxiv.org/abs/2401.17231v2
- Date: Wed, 24 Apr 2024 17:55:06 GMT
- Title: Achieving More Human Brain-Like Vision via Human EEG Representational Alignment
- Authors: Zitong Lu, Yile Wang, Julie D. Golomb,
- Abstract summary: We present 'Re(presentational)Al(ignment)net', a vision model aligned with human brain activity based on non-invasive EEG.
Our innovative image-to-brain multi-layer encoding framework advances human neural alignment by optimizing multiple model layers.
Our findings suggest that ReAlnet represents a breakthrough in bridging the gap between artificial and human vision, and paving the way for more brain-like artificial intelligence systems.
- Score: 1.811217832697894
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite advancements in artificial intelligence, object recognition models still lag behind in emulating visual information processing in human brains. Recent studies have highlighted the potential of using neural data to mimic brain processing; however, these often rely on invasive neural recordings from non-human subjects, leaving a critical gap in understanding human visual perception. Addressing this gap, we present, for the first time, 'Re(presentational)Al(ignment)net', a vision model aligned with human brain activity based on non-invasive EEG, demonstrating a significantly higher similarity to human brain representations. Our innovative image-to-brain multi-layer encoding framework advances human neural alignment by optimizing multiple model layers and enabling the model to efficiently learn and mimic human brain's visual representational patterns across object categories and different modalities. Our findings suggest that ReAlnet represents a breakthrough in bridging the gap between artificial and human vision, and paving the way for more brain-like artificial intelligence systems.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Aligning Machine and Human Visual Representations across Abstraction Levels [42.86478924838503]
Deep neural networks have achieved success across a wide range of applications, including as models of human behavior in vision tasks.
However, neural network training and human learning differ in fundamental ways, and neural networks often fail to generalize as robustly as humans do.
We highlight a key misalignment between vision models and humans: whereas human conceptual knowledge is hierarchically organized from fine- to coarse-scale distinctions, model representations do not accurately capture all these levels of abstraction.
To address this misalignment, we first train a teacher model to imitate human judgments, then transfer human-like structure from its representations into pretrained state-of-the
arXiv Detail & Related papers (2024-09-10T13:41:08Z) - Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment [2.035627332992055]
Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception.
This study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework.
The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG
arXiv Detail & Related papers (2024-07-15T03:31:42Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
We propose an artificial neural network dubbed VISION to mimic the human brain and show how it can foster neuroscientific inquiries.
VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%.
arXiv Detail & Related papers (2023-09-26T15:38:26Z) - Brain Captioning: Decoding human brain activity into images and text [1.5486926490986461]
We present an innovative method for decoding brain activity into meaningful images and captions.
Our approach takes advantage of cutting-edge image captioning models and incorporates a unique image reconstruction pipeline.
We evaluate our methods using quantitative metrics for both generated captions and images.
arXiv Detail & Related papers (2023-05-19T09:57:19Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
We propose a brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity.
Our model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner.
arXiv Detail & Related papers (2022-10-27T22:20:36Z) - Computational imaging with the human brain [1.614301262383079]
Brain-computer interfaces (BCIs) are enabling a range of new possibilities and routes for augmenting human capability.
We demonstrate ghost imaging of a hidden scene using the human visual system that is combined with an adaptive computational imaging scheme.
This brain-computer connectivity demonstrates a form of augmented human computation that could in the future extend the sensing range of human vision.
arXiv Detail & Related papers (2022-10-07T08:40:18Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
We present a newly-designed multimodal foundation model pre-trained on 15 million image-text pairs.
We find that both visual and lingual encoders trained multimodally are more brain-like compared with unimodal ones.
arXiv Detail & Related papers (2022-08-17T12:36:26Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too.
This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neuro-robotics.
arXiv Detail & Related papers (2020-03-23T14:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.