Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey)
- URL: http://arxiv.org/abs/2307.10246v3
- Date: Sun, 29 Dec 2024 18:54:51 GMT
- Title: Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey)
- Authors: Subba Reddy Oota, Zijiao Chen, Manish Gupta, Raju S. Bapi, Gael Jobard, Frederic Alexandre, Xavier Hinaut,
- Abstract summary: Can artificial intelligence unlock the secrets of the human brain?
Is it possible to enhance AI by tapping into the power of brain recordings?
Our survey focuses on human brain recording studies and cutting-edge cognitive neuroscience datasets.
- Score: 9.14580723964253
- License:
- Abstract: Can artificial intelligence unlock the secrets of the human brain? How do the inner mechanisms of deep learning models relate to our neural circuits? Is it possible to enhance AI by tapping into the power of brain recordings? These captivating questions lie at the heart of an emerging field at the intersection of neuroscience and artificial intelligence. Our survey dives into this exciting domain, focusing on human brain recording studies and cutting-edge cognitive neuroscience datasets that capture brain activity during natural language processing, visual perception, and auditory experiences. We explore two fundamental approaches: encoding models, which attempt to generate brain activity patterns from sensory inputs; and decoding models, which aim to reconstruct our thoughts and perceptions from neural signals. These techniques not only promise breakthroughs in neurological diagnostics and brain-computer interfaces but also offer a window into the very nature of cognition. In this survey, we first discuss popular representations of language, vision, and speech stimuli, and present a summary of neuroscience datasets. We then review how the recent advances in deep learning transformed this field, by investigating the popular deep learning based encoding and decoding architectures, noting their benefits and limitations across different sensory modalities. From text to images, speech to videos, we investigate how these models capture the brain's response to our complex, multimodal world. While our primary focus is on human studies, we also highlight the crucial role of animal models in advancing our understanding of neural mechanisms. Throughout, we mention the ethical implications of these powerful technologies, addressing concerns about privacy and cognitive liberty. We conclude with a summary and discussion of future trends in this rapidly evolving field.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Decoding Linguistic Representations of Human Brain [21.090956290947275]
We present a taxonomy of brain-to-language decoding of both textual and speech formats.
This work integrates two types of research: neuroscience focusing on language understanding and deep learning-based brain decoding.
arXiv Detail & Related papers (2024-07-30T07:55:44Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods.
Despite the impressive advancements achieved by deep learning models, they still have shortcomings in abstract reasoning and causal understanding.
arXiv Detail & Related papers (2024-01-03T09:46:36Z) - Brain-inspired Computing Based on Deep Learning for Human-computer Interaction: A Review [1.18749525824656]
Brain-inspired computing is an important intersection between multimodal technology and biomedical field.
This paper presents a review of the brain-inspired computing models based on deep learning (DL), tracking its evolution, application value, challenges and potential research trends.
Despite significant advances in brain-inspired computational models, challenges remain to fully exploit their capabilities.
arXiv Detail & Related papers (2023-12-12T12:26:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
Current brain-computer interface (BCI) technology is mainly on therapeutic outcomes.
Recently, artificial intelligence (AI) and machine learning (ML) technologies have been used to decode brain signals.
We envision the development of closed loop, intelligent, low-power, and miniaturized neural interfaces.
arXiv Detail & Related papers (2022-10-04T08:35:34Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Brain Co-Processors: Using AI to Restore and Augment Brain Function [2.3986080077861787]
We introduce brain co-processors, devices that combine decoding and encoding in a unified framework using artificial intelligence (AI)
Brain co-processors can be used for a range of applications, from inducing Hebbian plasticity for rehabilitation after brain injury to reanimating paralyzed limbs and enhancing memory.
We describe a new framework for developing brain co-processors based on artificial neural networks, deep learning and reinforcement learning.
arXiv Detail & Related papers (2020-12-06T21:06:28Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.