Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation
- URL: http://arxiv.org/abs/2401.17484v3
- Date: Sat, 20 Apr 2024 21:14:15 GMT
- Title: Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation
- Authors: Chanyoung Chung, Georgios Georgakis, Patrick Spieler, Curtis Padgett, Ali Agha, Shehryar Khattak,
- Abstract summary: We present a learning-based approach capable of predicting terrain elevation maps at long-range using only onboard egocentric images in real-time.
We experimentally validate the applicability of our proposed approach for autonomous offroad robotic navigation in complex and unstructured terrain.
- Score: 10.898724668444125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding terrain topology at long-range is crucial for the success of off-road robotic missions, especially when navigating at high-speeds. LiDAR sensors, which are currently heavily relied upon for geometric mapping, provide sparse measurements when mapping at greater distances. To address this challenge, we present a novel learning-based approach capable of predicting terrain elevation maps at long-range using only onboard egocentric images in real-time. Our proposed method is comprised of three main elements. First, a transformer-based encoder is introduced that learns cross-view associations between the egocentric views and prior bird-eye-view elevation map predictions. Second, an orientation-aware positional encoding is proposed to incorporate the 3D vehicle pose information over complex unstructured terrain with multi-view visual image features. Lastly, a history-augmented learn-able map embedding is proposed to achieve better temporal consistency between elevation map predictions to facilitate the downstream navigational tasks. We experimentally validate the applicability of our proposed approach for autonomous offroad robotic navigation in complex and unstructured terrain using real-world offroad driving data. Furthermore, the method is qualitatively and quantitatively compared against the current state-of-the-art methods. Extensive field experiments demonstrate that our method surpasses baseline models in accurately predicting terrain elevation while effectively capturing the overall terrain topology at long-ranges. Finally, ablation studies are conducted to highlight and understand the effect of key components of the proposed approach and validate their suitability to improve offroad robotic navigation capabilities.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - UFO: Uncertainty-aware LiDAR-image Fusion for Off-road Semantic Terrain
Map Estimation [2.048226951354646]
This paper presents a learning-based fusion method for generating dense terrain classification maps in BEV.
Our approach enhances the accuracy of semantic maps generated from an RGB image and a single-sweep LiDAR scan.
arXiv Detail & Related papers (2024-03-05T04:20:03Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
We present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view.
Our model runs at 25 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.
arXiv Detail & Related papers (2022-11-15T13:52:41Z) - Satellite Image Based Cross-view Localization for Autonomous Vehicle [59.72040418584396]
This paper shows that by using an off-the-shelf high-definition satellite image as a ready-to-use map, we are able to achieve cross-view vehicle localization up to a satisfactory accuracy.
Our method is validated on KITTI and Ford Multi-AV Seasonal datasets as ground view and Google Maps as the satellite view.
arXiv Detail & Related papers (2022-07-27T13:16:39Z) - Learning multiobjective rough terrain traversability [0.0]
We present a method that uses high-resolution topography data of rough terrain, and ground vehicle simulation, to predict traversability.
A deep neural network is trained to predict the traversability measures from the local heightmap and target speed.
We evaluate the model on laser-scanned forest terrains, previously unseen by the model.
arXiv Detail & Related papers (2022-03-30T14:31:43Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
Long-range navigation requires both planning and reasoning about local traversability.
We propose a learning-based approach that integrates learning and planning.
ViKiNG can leverage its image-based learned controller and goal-directed to navigate to goals up to 3 kilometers away.
arXiv Detail & Related papers (2022-02-23T02:14:23Z) - Lifelong Topological Visual Navigation [16.41858724205884]
We propose a learning-based visual navigation method with graph update strategies that improve lifelong navigation performance over time.
We take inspiration from sampling-based planning algorithms to build image-based topological graphs, resulting in sparser graphs yet with higher navigation performance compared to baseline methods.
Unlike controllers that learn from fixed training environments, we show that our model can be finetuned using a relatively small dataset from the real-world environment where the robot is deployed.
arXiv Detail & Related papers (2021-10-16T06:16:14Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images.
Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation.
We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation.
arXiv Detail & Related papers (2021-03-07T02:16:24Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z) - Predicting Semantic Map Representations from Images using Pyramid
Occupancy Networks [27.86228863466213]
We present a simple, unified approach for estimating maps directly from monocular images using a single end-to-end deep learning architecture.
We demonstrate the effectiveness of our approach by evaluating against several challenging baselines on the NuScenes and Argoverse datasets.
arXiv Detail & Related papers (2020-03-30T12:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.