Satellite Image Based Cross-view Localization for Autonomous Vehicle
- URL: http://arxiv.org/abs/2207.13506v3
- Date: Thu, 20 Apr 2023 15:03:13 GMT
- Title: Satellite Image Based Cross-view Localization for Autonomous Vehicle
- Authors: Shan Wang, Yanhao Zhang, Ankit Vora, Akhil Perincherry, and Hongdong
Li
- Abstract summary: This paper shows that by using an off-the-shelf high-definition satellite image as a ready-to-use map, we are able to achieve cross-view vehicle localization up to a satisfactory accuracy.
Our method is validated on KITTI and Ford Multi-AV Seasonal datasets as ground view and Google Maps as the satellite view.
- Score: 59.72040418584396
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing spatial localization techniques for autonomous vehicles mostly use a
pre-built 3D-HD map, often constructed using a survey-grade 3D mapping vehicle,
which is not only expensive but also laborious. This paper shows that by using
an off-the-shelf high-definition satellite image as a ready-to-use map, we are
able to achieve cross-view vehicle localization up to a satisfactory accuracy,
providing a cheaper and more practical way for localization. While the
utilization of satellite imagery for cross-view localization is an established
concept, the conventional methodology focuses primarily on image retrieval.
This paper introduces a novel approach to cross-view localization that departs
from the conventional image retrieval method. Specifically, our method develops
(1) a Geometric-align Feature Extractor (GaFE) that leverages measured 3D
points to bridge the geometric gap between ground and overhead views, (2) a
Pose Aware Branch (PAB) adopting a triplet loss to encourage pose-aware feature
extraction, and (3) a Recursive Pose Refine Branch (RPRB) using the
Levenberg-Marquardt (LM) algorithm to align the initial pose towards the true
vehicle pose iteratively. Our method is validated on KITTI and Ford Multi-AV
Seasonal datasets as ground view and Google Maps as the satellite view. The
results demonstrate the superiority of our method in cross-view localization
with median spatial and angular errors within $1$ meter and $1^\circ$,
respectively.
Related papers
- Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation [10.898724668444125]
We present a learning-based approach capable of predicting terrain elevation maps at long-range using only onboard egocentric images in real-time.
We experimentally validate the applicability of our proposed approach for autonomous offroad robotic navigation in complex and unstructured terrain.
arXiv Detail & Related papers (2024-01-30T22:37:24Z) - Boosting 3-DoF Ground-to-Satellite Camera Localization Accuracy via
Geometry-Guided Cross-View Transformer [66.82008165644892]
We propose a method to increase the accuracy of a ground camera's location and orientation by estimating the relative rotation and translation between the ground-level image and its matched/retrieved satellite image.
Experimental results demonstrate that our method significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2023-07-16T11:52:27Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
We present a new cross-modal 3D object detector, namely UPIDet, which aims to unleash the potential of the image branch from two aspects.
First, UPIDet introduces a new 2D auxiliary task called normalized local coordinate map estimation.
Second, we discover that the representational capability of the point cloud backbone can be enhanced through the gradients backpropagated from the training objectives of the image branch.
arXiv Detail & Related papers (2023-01-22T08:26:58Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Semantic Image Alignment for Vehicle Localization [111.59616433224662]
We present a novel approach to vehicle localization in dense semantic maps using semantic segmentation from a monocular camera.
In contrast to existing visual localization approaches, the system does not require additional keypoint features, handcrafted localization landmark extractors or expensive LiDAR sensors.
arXiv Detail & Related papers (2021-10-08T14:40:15Z) - Coarse-to-fine Semantic Localization with HD Map for Autonomous Driving
in Structural Scenes [1.1024591739346292]
We propose a cost-effective vehicle localization system with HD map for autonomous driving using cameras as primary sensors.
We formulate vision-based localization as a data association problem that maps visual semantics to landmarks in HD map.
We evaluate our method on two datasets and demonstrate that the proposed approach yields promising localization results in different driving scenarios.
arXiv Detail & Related papers (2021-07-06T11:58:55Z) - Crowdsourced 3D Mapping: A Combined Multi-View Geometry and
Self-Supervised Learning Approach [10.610403488989428]
We propose a framework that estimates the 3D positions of semantically meaningful landmarks without assuming known camera intrinsics.
We utilize multi-view geometry as well as deep learning based self-calibration, depth, and ego-motion estimation for traffic sign positioning.
We achieve an average single-journey relative and absolute positioning accuracy of 39cm and 1.26m respectively.
arXiv Detail & Related papers (2020-07-25T12:10:16Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.