LeTO: Learning Constrained Visuomotor Policy with Differentiable Trajectory Optimization
- URL: http://arxiv.org/abs/2401.17500v3
- Date: Wed, 23 Oct 2024 18:04:54 GMT
- Title: LeTO: Learning Constrained Visuomotor Policy with Differentiable Trajectory Optimization
- Authors: Zhengtong Xu, Yu She,
- Abstract summary: This paper introduces LeTO, a method for learning constrained visuomotor policy with differentiable trajectory optimization.
We quantitatively evaluate LeTO in simulation and in the real robot.
- Score: 1.1602089225841634
- License:
- Abstract: This paper introduces LeTO, a method for learning constrained visuomotor policy with differentiable trajectory optimization. Our approach integrates a differentiable optimization layer into the neural network. By formulating the optimization layer as a trajectory optimization problem, we enable the model to end-to-end generate actions in a safe and constraint-controlled fashion without extra modules. Our method allows for the introduction of constraint information during the training process, thereby balancing the training objectives of satisfying constraints, smoothing the trajectories, and minimizing errors with demonstrations. This ``gray box" method marries optimization-based safety and interpretability with powerful representational abilities of neural networks. We quantitatively evaluate LeTO in simulation and in the real robot. The results demonstrate that LeTO performs well in both simulated and real-world tasks. In addition, it is capable of generating trajectories that are less uncertain, higher quality, and smoother compared to existing imitation learning methods. Therefore, it is shown that LeTO provides a practical example of how to achieve the integration of neural networks with trajectory optimization. We release our code at https://github.com/ZhengtongXu/LeTO.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Towards Optimal Learning of Language Models [124.65669486710992]
We present a theory for the optimal learning of language models (LMs)
We derive a theorem, named Learning Law, to reveal the properties of the dynamics in the optimal learning process under our objective.
We empirically verify that the optimal learning of LMs essentially stems from the improvement of the coefficients in the scaling law of LMs.
arXiv Detail & Related papers (2024-02-27T18:52:19Z) - DiffTORI: Differentiable Trajectory Optimization for Deep Reinforcement and Imitation Learning [19.84386060857712]
This paper introduces DiffTORI, which utilizes Differentiable Trajectory optimization as the policy representation to generate actions for deep Reinforcement and Imitation learning.
Across 15 model-based RL tasks and 35 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms prior state-of-the-art methods in both domains.
arXiv Detail & Related papers (2024-02-08T05:26:40Z) - Learning to optimize by multi-gradient for multi-objective optimization [0.0]
We introduce a new automatic learning paradigm for optimizing MOO problems, and propose a multi-gradient learning to optimize (ML2O) method.
As a learning-based method, ML2O acquires knowledge of local landscapes by leveraging information from the current step.
We show that our learned outperforms hand-designed competitors on training multi-task learning (MTL) neural network.
arXiv Detail & Related papers (2023-11-01T14:55:54Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Learning Off-Policy with Online Planning [18.63424441772675]
We investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function.
We show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments.
arXiv Detail & Related papers (2020-08-23T16:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.