Gradient-Free Score-Based Sampling Methods with Ensembles
- URL: http://arxiv.org/abs/2401.17539v2
- Date: Sat, 31 May 2025 01:52:12 GMT
- Title: Gradient-Free Score-Based Sampling Methods with Ensembles
- Authors: Bryan Riel, Tobias Bischoff,
- Abstract summary: We introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques.<n>We demonstrate the efficacy of the ensemble strategies through various examples.<n>Our findings highlight the potential of ensemble strategies for modeling complex probability distributions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent developments in generative modeling have utilized score-based methods coupled with stochastic differential equations to sample from complex probability distributions. However, these and other performant sampling methods generally require gradients of the target probability distribution, which can be unavailable or computationally prohibitive in many scientific and engineering applications. Here, we introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F\"ollmer sampler. We demonstrate the efficacy of the ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like the No-U-Turn Sampler. Additionally, we showcase these strategies in the context of a high-dimensional Bayesian inversion problem within the geophysical sciences. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable.
Related papers
- Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching [33.9461078261722]
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities.
We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates.
We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models.
arXiv Detail & Related papers (2025-04-16T02:20:06Z) - Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics [7.873510219469276]
We introduce two novel training methods for discrete diffusion samplers.<n>These methods yield memory-efficient training and achieve state-of-the-art results in unsupervised optimization.<n>We introduce adaptations of SN-NIS and Neural Chain Monte Carlo that enable for the first time the application of discrete diffusion models to this problem.
arXiv Detail & Related papers (2025-02-12T18:59:55Z) - Sampling in High-Dimensions using Stochastic Interpolants and Forward-Backward Stochastic Differential Equations [8.509310102094512]
We present a class of diffusion-based algorithms to draw samples from high-dimensional probability distributions.<n>Our approach relies on the interpolants framework to define a time-indexed collection of probability densities.<n>We demonstrate that our algorithm can effectively draw samples from distributions that conventional methods struggle to handle.
arXiv Detail & Related papers (2025-02-01T07:27:11Z) - Diffusing Differentiable Representations [60.72992910766525]
We introduce a novel, training-free method for sampling differentiable representations (diffreps) using pretrained diffusion models.
We identify an implicit constraint on the samples induced by the diffrep and demonstrate that addressing this constraint significantly improves the consistency and detail of the generated objects.
arXiv Detail & Related papers (2024-12-09T20:42:58Z) - Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
We introduce Learned Reference-based Diffusion Sampler (LRDS), a methodology specifically designed to leverage prior knowledge on the location of the target modes.
LRDS proceeds in two steps by learning a reference diffusion model on samples located in high-density space regions.
We experimentally demonstrate that LRDS best exploits prior knowledge on the target distribution compared to competing algorithms on a variety of challenging distributions.
arXiv Detail & Related papers (2024-10-25T10:23:34Z) - Conditional sampling within generative diffusion models [12.608803080528142]
We present a review of existing computational approaches to conditional sampling within generative diffusion models.
We highlight key methodologies that either utilise the joint distribution, or rely on (pre-trained) marginal distributions with explicit likelihoods.
arXiv Detail & Related papers (2024-09-15T07:48:40Z) - New algorithms for sampling and diffusion models [0.0]
We introduce a novel sampling method for known distributions and a new algorithm for diffusion generative models with unknown distributions.
Our approach is inspired by the concept of the reverse diffusion process, widely adopted in diffusion generative models.
arXiv Detail & Related papers (2024-06-14T02:30:04Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
Current deep learning approaches rely on generative models that yield exact sample likelihoods.
This work introduces a method that lifts this restriction and opens the possibility to employ highly expressive latent variable models.
We experimentally validate our approach in data-free Combinatorial Optimization and demonstrate that our method achieves a new state-of-the-art on a wide range of benchmark problems.
arXiv Detail & Related papers (2024-06-03T17:55:02Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
We propose a new method for separating superimposed sources using diffusion-based generative models.
Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature.
Our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme.
arXiv Detail & Related papers (2023-06-26T04:12:40Z) - Structured Voronoi Sampling [61.629198273926676]
In this paper, we take an important step toward building a principled approach for sampling from language models with gradient-based methods.
We name our gradient-based technique Structured Voronoi Sampling (SVS)
In a controlled generation task, SVS is able to generate fluent and diverse samples while following the control targets significantly better than other methods.
arXiv Detail & Related papers (2023-06-05T17:32:35Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
We put forward four methods for learning sampling distributions from observed measurements.
Experiments demonstrate that learned sampling distributions exhibit better performance than designed, minimum-degeneracy sampling distributions.
arXiv Detail & Related papers (2023-02-02T15:50:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.