論文の概要: Effective Multi-Stage Training Model For Edge Computing Devices In
Intrusion Detection
- arxiv url: http://arxiv.org/abs/2401.17546v1
- Date: Wed, 31 Jan 2024 02:20:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-01 15:52:22.156984
- Title: Effective Multi-Stage Training Model For Edge Computing Devices In
Intrusion Detection
- Title(参考訳): エッジコンピューティング装置の侵入検知における効果的な多段階訓練モデル
- Authors: Thua Huynh Trong, Thanh Nguyen Hoang
- Abstract要約: 本研究は,3段階の訓練パラダイムを導入し,改良されたプルーニング手法とモデル圧縮手法により強化した。
目的はシステムの有効性を高めることであり、侵入検知のための高いレベルの精度を同時に維持することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrusion detection poses a significant challenge within expansive and
persistently interconnected environments. As malicious code continues to
advance and sophisticated attack methodologies proliferate, various advanced
deep learning-based detection approaches have been proposed. Nevertheless, the
complexity and accuracy of intrusion detection models still need further
enhancement to render them more adaptable to diverse system categories,
particularly within resource-constrained devices, such as those embedded in
edge computing systems. This research introduces a three-stage training
paradigm, augmented by an enhanced pruning methodology and model compression
techniques. The objective is to elevate the system's effectiveness,
concurrently maintaining a high level of accuracy for intrusion detection.
Empirical assessments conducted on the UNSW-NB15 dataset evince that this
solution notably reduces the model's dimensions, while upholding accuracy
levels equivalent to similar proposals.
- Abstract(参考訳): 侵入検知は、拡張的で永続的な相互接続環境において重要な課題となる。
悪意のあるコードが進歩し、高度な攻撃方法が急増するにつれて、様々な高度なディープラーニングに基づく検出手法が提案されている。
それでも、侵入検出モデルの複雑さと正確性は、エッジコンピューティングシステムに埋め込まれたようなリソース制約のあるデバイスにおいて、より多様なシステムカテゴリに適応できるようにさらなる拡張が必要である。
本研究は、3段階のトレーニングパラダイムを導入し,改良型プルーニング手法とモデル圧縮手法によって強化する。
目的はシステムの有効性を高め、侵入検知のための高いレベルの精度を維持することである。
UNSW-NB15データセットで実施された実証的な評価では、このソリューションはモデルの大きさを著しく減らし、類似の提案と同等の精度を保っている。
関連論文リスト
- Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
異常検出は、産業制御システムの安全かつ信頼性の高い運用に不可欠である。
本稿では,このニーズを満たすための新しい深層生成モデルを提案する。
論文 参考訳(メタデータ) (2024-05-03T23:58:27Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。