論文の概要: Logit Poisoning Attack in Distillation-based Federated Learning and its Countermeasures
- arxiv url: http://arxiv.org/abs/2401.17746v1
- Date: Wed, 31 Jan 2024 11:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 12:08:11.094535
- Title: Logit Poisoning Attack in Distillation-based Federated Learning and its Countermeasures
- Title(参考訳): 蒸留法に基づくフェデレーション学習におけるロジット中毒とその対策
- Authors: Yonghao Yu, Shunan Zhu, Jinglu Hu,
- Abstract要約: これまでの問題点に対処するため,ロジト中毒攻撃のための2段階の手法を提案する。
本研究は,ロジト中毒による重篤な脅威を明らかにし,防衛アルゴリズムの有効性を強調した。
- 参考スコア(独自算出の注目度): 1.1777304970289215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distillation-based federated learning has emerged as a promising collaborative learning approach, where clients share the output logit vectors of a public dataset rather than their private model parameters. This practice reduces the risk of privacy invasion attacks and facilitates heterogeneous learning. The landscape of poisoning attacks within distillation-based federated learning is complex, with existing research employing traditional data poisoning strategies targeting the models' parameters. However, these attack schemes primarily have shortcomings rooted in their original designs, which target the model parameters rather than the logit vectors. Furthermore, they do not adequately consider the role of logit vectors in carrying information during the knowledge transfer process. This misalignment results in less efficiency in the context of distillation-based federated learning. Due to the limitations of existing methodologies, our research delves into the intrinsic properties of the logit vector, striving for a more nuanced understanding. We introduce a two-stage scheme for logit poisoning attacks, addressing previous shortcomings. Initially, we collect the local logits, generate the representative vectors, categorize the logit elements within the vector, and design a shuffling table to maximize information entropy. Then, we intentionally scale the shuffled logit vectors to enhance the magnitude of the target vectors. Concurrently, we propose an efficient defense algorithm to counter this new poisoning scheme by calculating the distance between estimated benign vectors and vectors uploaded by users. Through extensive experiments, our study illustrates the significant threat posed by the proposed logit poisoning attack and highlights the effectiveness of our defense algorithm.
- Abstract(参考訳): 蒸留ベースのフェデレーション学習は、クライアントがプライベートモデルパラメータではなく、パブリックデータセットの出力ロジットベクトルを共有する、有望なコラボレーティブな学習アプローチとして登場した。
このプラクティスは、プライバシー侵害のリスクを低減し、異種学習を促進する。
蒸留に基づくフェデレート学習における中毒攻撃の状況は複雑であり、既存の研究ではモデルのパラメータをターゲットとした従来のデータ中毒戦略を採用している。
しかしながら、これらの攻撃方式は主に、ロジットベクトルではなくモデルパラメータをターゲットとする、元の設計に根ざした欠点がある。
さらに,情報伝達過程において,情報伝達におけるロジットベクトルの役割を十分に考慮していない。
このミスアライメントは、蒸留に基づくフェデレート学習の文脈における効率を低下させる。
既存の方法論の限界により、我々の研究はロジットベクトルの本質的な性質を解明し、より微妙な理解を目指しています。
これまでの問題点に対処するため,ロジト中毒攻撃のための2段階スキームを導入する。
まず、ローカルロジットを収集し、代表ベクトルを生成し、ベクトル内のロジット要素を分類し、情報エントロピーを最大化するシャッフルテーブルを設計する。
次に,シャッフルされたロジットベクトルを意図的に拡張し,対象ベクトルの大きさを拡大する。
同時に,利用者がアップロードしたベクターとベクターとの距離を計算し,この新たな毒殺対策を効果的に行うことを提案する。
本研究は広範な実験を通じて,ロジト中毒攻撃による重大な脅威を明らかにし,防衛アルゴリズムの有効性を強調した。
関連論文リスト
- Have You Poisoned My Data? Defending Neural Networks against Data Poisoning [0.393259574660092]
本稿では,トランスファー学習環境における有毒なデータポイントの検出とフィルタリングを行う新しい手法を提案する。
有効毒は, 特徴ベクトル空間の清浄点とよく区別できることを示す。
提案手法は, 防衛率と最終訓練モデルの性能において, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-20T11:50:16Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning
Few-Shot Meta-Learners [28.468089304148453]
これにより、システムの学習アルゴリズムを騙すような、衝突する入力セットを作れます。
ホワイトボックス環境では、これらの攻撃は非常に成功しており、ターゲットモデルの予測が偶然よりも悪化する可能性があることを示す。
攻撃による「過度な対応」と、攻撃が生成されたモデルと攻撃が転送されたモデルとのミスマッチという2つの仮説を探索する。
論文 参考訳(メタデータ) (2022-11-23T14:55:44Z) - Defending against the Label-flipping Attack in Federated Learning [5.769445676575767]
フェデレーテッド・ラーニング(FL)は、参加する仲間にデザインによる自律性とプライバシを提供する。
ラベルフリッピング(LF)攻撃(英: label-flipping, LF)は、攻撃者がラベルをめくってトレーニングデータに毒を盛る攻撃である。
本稿では、まず、ピアのローカル更新からこれらの勾配を動的に抽出する新しいディフェンスを提案する。
論文 参考訳(メタデータ) (2022-07-05T12:02:54Z) - SparseFed: Mitigating Model Poisoning Attacks in Federated Learning with
Sparsification [24.053704318868043]
モデル中毒攻撃では、攻撃者は"poisoned"アップデートをアップロードすることで、ターゲットのサブタスクのパフォーマンスを低下させる。
本稿では,グローバルなトップk更新スペーシフィケーションとデバイスレベルのクリッピング勾配を利用して,モデル中毒攻撃を緩和する新しいディフェンスであるalgonameを紹介する。
論文 参考訳(メタデータ) (2021-12-12T16:34:52Z) - RamBoAttack: A Robust Query Efficient Deep Neural Network Decision
Exploit [9.93052896330371]
本研究では,局所的な最小値の侵入を回避し,ノイズ勾配からのミスダイレクトを回避できる,堅牢なクエリ効率の高い攻撃法を開発した。
RamBoAttackは、敵クラスとターゲットクラスで利用可能な異なるサンプルインプットに対して、より堅牢である。
論文 参考訳(メタデータ) (2021-12-10T01:25:24Z) - Poisoning Attack against Estimating from Pairwise Comparisons [140.9033911097995]
攻撃者はランクリストを操作するための強い動機と動機を持っている。
ペアワイズランキングアルゴリズムに対するデータ中毒攻撃は、ローダとアタッカーの間の動的および静的ゲームとして形式化することができる。
本稿では、2つの効率的な毒殺攻撃アルゴリズムを提案し、関連する理論的保証を確立する。
論文 参考訳(メタデータ) (2021-07-05T08:16:01Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
我々は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを示します。
我々の研究は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを検証する。
論文 参考訳(メタデータ) (2021-06-18T08:29:53Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning攻撃は、トレーニングデータを変更して、そのようなデータでトレーニングされたモデルを悪意を持って制御する。
我々は「スクラッチから」と「クリーンラベルから」の両方である特に悪意のある毒物攻撃を分析します。
フルサイズで有毒なImageNetデータセットをスクラッチからトレーニングした現代のディープネットワークにおいて、ターゲットの誤分類を引き起こすのは、これが初めてであることを示す。
論文 参考訳(メタデータ) (2020-09-04T16:17:54Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。