SU-SAM: A Simple Unified Framework for Adapting Segment Anything Model in Underperformed Scenes
- URL: http://arxiv.org/abs/2401.17803v2
- Date: Mon, 29 Jul 2024 08:43:48 GMT
- Title: SU-SAM: A Simple Unified Framework for Adapting Segment Anything Model in Underperformed Scenes
- Authors: Yiran Song, Qianyu Zhou, Xuequan Lu, Zhiwen Shao, Lizhuang Ma,
- Abstract summary: Segment anything model (SAM) has demonstrated excellent generalizability in common vision scenarios, yet falling short of the ability to understand specialized data.
Recent methods have combined parameter-efficient techniques with task-specific designs to fine-tune SAM on particular tasks.
We present a simple and unified framework, namely SU-SAM, that can easily and efficiently fine-tune the SAM model with parameter-efficient techniques.
- Score: 34.796859088106636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segment anything model (SAM) has demonstrated excellent generalizability in common vision scenarios, yet falling short of the ability to understand specialized data. Recently, several methods have combined parameter-efficient techniques with task-specific designs to fine-tune SAM on particular tasks. However, these methods heavily rely on handcraft, complicated, and task-specific designs, and pre/post-processing to achieve acceptable performances on downstream tasks. As a result, this severely restricts generalizability to other downstream tasks. To address this issue, we present a simple and unified framework, namely SU-SAM, that can easily and efficiently fine-tune the SAM model with parameter-efficient techniques while maintaining excellent generalizability toward various downstream tasks. SU-SAM does not require any task-specific designs and aims to improve the adaptability of SAM-like models significantly toward underperformed scenes. Concretely, we abstract parameter-efficient modules of different methods into basic design elements in our framework. Besides, we propose four variants of SU-SAM, i.e., series, parallel, mixed, and LoRA structures. Comprehensive experiments on nine datasets and six downstream tasks to verify the effectiveness of SU-SAM, including medical image segmentation, camouflage object detection, salient object segmentation, surface defect segmentation, complex object shapes, and shadow masking. Our experimental results demonstrate that SU-SAM achieves competitive or superior accuracy compared to state-of-the-art methods. Furthermore, we provide in-depth analyses highlighting the effectiveness of different parameter-efficient designs within SU-SAM. In addition, we propose a generalized model and benchmark, showcasing SU-SAM's generalizability across all diverse datasets simultaneously.
Related papers
- Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
Segment Anything Model (SAM) has made great progress in anomaly segmentation tasks due to its impressive generalization ability.
Existing methods that directly apply SAM through prompting often overlook the domain shift issue.
We propose a novel Self-Perceptinon Tuning (SPT) method, aiming to enhance SAM's perception capability for anomaly segmentation.
arXiv Detail & Related papers (2024-11-26T08:33:25Z) - On Efficient Variants of Segment Anything Model: A Survey [63.127753705046]
The Segment Anything Model (SAM) is a foundational model for image segmentation tasks, known for its strong generalization across diverse applications.
To address this, a variety of SAM variants have been proposed to enhance efficiency while keeping accuracy.
This survey provides the first comprehensive review of these efficient SAM variants.
arXiv Detail & Related papers (2024-10-07T11:59:54Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - ASAM: Boosting Segment Anything Model with Adversarial Tuning [9.566046692165884]
This paper introduces ASAM, a novel methodology that amplifies a foundation model's performance through adversarial tuning.
We harness the potential of natural adversarial examples, inspired by their successful implementation in natural language processing.
Our approach maintains the photorealism of adversarial examples and ensures alignment with original mask annotations.
arXiv Detail & Related papers (2024-05-01T00:13:05Z) - Task-Aware Low-Rank Adaptation of Segment Anything Model [4.5963832382272125]
The Segment Anything Model (SAM) has been proven to be a powerful foundation model for image segmentation tasks.
We propose the Task-Aware Low-Rank Adaptation (TA-LoRA) method, which enables SAM to work as a foundation model for multi-task learning.
arXiv Detail & Related papers (2024-03-16T17:02:50Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
We present WSI-SAM, enhancing Segment Anything Model (SAM) with precise object segmentation capabilities for histopathology images.
To fully exploit pretrained knowledge while minimizing training overhead, we keep SAM frozen, introducing only minimal extra parameters.
Our model outperforms SAM by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task.
arXiv Detail & Related papers (2024-03-14T10:30:43Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [76.21007576954035]
We propose a framework to obtain a tiny segment anything model (TinySAM) while maintaining the strong zero-shot performance.
We first propose a full-stage knowledge distillation method with hard prompt sampling and hard mask weighting strategy to distill a lightweight student model.
We also adapt the post-training quantization to the promptable segmentation task and further reduce the computational cost.
arXiv Detail & Related papers (2023-12-21T12:26:11Z) - SAM-PARSER: Fine-tuning SAM Efficiently by Parameter Space
Reconstruction [53.871596866809725]
Segment Anything Model (SAM) has received remarkable attention as it offers a powerful and versatile solution for object segmentation in images.
We propose fine-tuning SAM efficiently by parameter space reconstruction (SAM-PARSER)
We obtain the bases by matrix decomposition, and fine-tuning the coefficients to reconstruct the parameter space tailored to the new scenario by an optimal linear combination of the bases.
arXiv Detail & Related papers (2023-08-28T14:17:16Z) - SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in
Underperformed Scenes: Camouflage, Shadow, Medical Image Segmentation, and
More [13.047310918166762]
We propose textbfSAM-Adapter, which incorporates domain-specific information or visual prompts into the segmentation network by using simple yet effective adapters.
We can even outperform task-specific network models and achieve state-of-the-art performance in the task we tested: camouflaged object detection.
arXiv Detail & Related papers (2023-04-18T17:38:54Z) - mSAM: Micro-Batch-Averaged Sharpness-Aware Minimization [20.560184120992094]
Sharpness-Aware Minimization technique modifies the fundamental loss function that steers gradient descent methods toward flatter minima.
We extend a recently developed and well-studied general framework for flatness analysis to theoretically show that SAM achieves flatter minima than SGD, and mSAM achieves even flatter minima than SAM.
arXiv Detail & Related papers (2023-02-19T23:27:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.