SAM-PARSER: Fine-tuning SAM Efficiently by Parameter Space
Reconstruction
- URL: http://arxiv.org/abs/2308.14604v3
- Date: Mon, 18 Dec 2023 07:40:35 GMT
- Title: SAM-PARSER: Fine-tuning SAM Efficiently by Parameter Space
Reconstruction
- Authors: Zelin Peng, Zhengqin Xu, Zhilin Zeng, Xiaokang Yang, Wei Shen
- Abstract summary: Segment Anything Model (SAM) has received remarkable attention as it offers a powerful and versatile solution for object segmentation in images.
We propose fine-tuning SAM efficiently by parameter space reconstruction (SAM-PARSER)
We obtain the bases by matrix decomposition, and fine-tuning the coefficients to reconstruct the parameter space tailored to the new scenario by an optimal linear combination of the bases.
- Score: 53.871596866809725
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Segment Anything Model (SAM) has received remarkable attention as it offers a
powerful and versatile solution for object segmentation in images. However,
fine-tuning SAM for downstream segmentation tasks under different scenarios
remains a challenge, as the varied characteristics of different scenarios
naturally requires diverse model parameter spaces. Most existing fine-tuning
methods attempt to bridge the gaps among different scenarios by introducing a
set of new parameters to modify SAM's original parameter space. Unlike these
works, in this paper, we propose fine-tuning SAM efficiently by parameter space
reconstruction (SAM-PARSER), which introduce nearly zero trainable parameters
during fine-tuning. In SAM-PARSER, we assume that SAM's original parameter
space is relatively complete, so that its bases are able to reconstruct the
parameter space of a new scenario. We obtain the bases by matrix decomposition,
and fine-tuning the coefficients to reconstruct the parameter space tailored to
the new scenario by an optimal linear combination of the bases. Experimental
results show that SAM-PARSER exhibits superior segmentation performance across
various scenarios, while reducing the number of trainable parameters by
$\approx 290$ times compared with current parameter-efficient fine-tuning
methods.
Related papers
- Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - TS-SAM: Fine-Tuning Segment-Anything Model for Downstream Tasks [10.75125721857487]
There is still a significant performance gap between fine-tuned SAMs and domain-specific models.
We propose Two-Stream SAM (TS-SAM), which integrates the powerful features from SAM into side network training for comprehensive feature fusion.
Extensive experiments on ten public datasets from three tasks demonstrate that TS-SAM not only significantly outperforms the recently proposed SAM-Adapter and SSOM, but achieves competitive performance with the SOTA domain-specific models.
arXiv Detail & Related papers (2024-08-03T18:08:51Z) - RobustSAM: Segment Anything Robustly on Degraded Images [19.767828436963317]
Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation.
We propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images.
Our method has been shown to effectively improve the performance of SAM-based downstream tasks such as single image dehazing and deblurring.
arXiv Detail & Related papers (2024-06-13T23:33:59Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are known for their effectiveness in learning long sequences.
We develop a new parameterization scheme, called HOPE, for LTI systems that utilize Markov parameters within Hankel operators.
Our new parameterization endows the SSM with non-decaying memory within a fixed time window, which is empirically corroborated by a sequential CIFAR-10 task with padded noise.
arXiv Detail & Related papers (2024-05-22T20:20:14Z) - SU-SAM: A Simple Unified Framework for Adapting Segment Anything Model in Underperformed Scenes [34.796859088106636]
Segment anything model (SAM) has demonstrated excellent generalizability in common vision scenarios, yet falling short of the ability to understand specialized data.
Recent methods have combined parameter-efficient techniques with task-specific designs to fine-tune SAM on particular tasks.
We present a simple and unified framework, namely SU-SAM, that can easily and efficiently fine-tune the SAM model with parameter-efficient techniques.
arXiv Detail & Related papers (2024-01-31T12:53:11Z) - ClassWise-SAM-Adapter: Parameter Efficient Fine-tuning Adapts Segment
Anything to SAR Domain for Semantic Segmentation [6.229326337093342]
Segment Anything Model (SAM) excels in various segmentation scenarios relying on semantic information and generalization ability.
The ClassWiseSAM-Adapter (CWSAM) is designed to adapt the high-performing SAM for landcover classification on space-borne Synthetic Aperture Radar (SAR) images.
CWSAM showcases enhanced performance with fewer computing resources.
arXiv Detail & Related papers (2024-01-04T15:54:45Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
We equip PEFT with a cross-block orchestration mechanism to enable the adaptation of the Segment Anything Model (SAM) to various downstream scenarios.
We propose an intra-block enhancement module, which introduces a linear projection head whose weights are generated from a hyper-complex layer.
Our proposed approach consistently improves the segmentation performance significantly on novel scenarios with only around 1K additional parameters.
arXiv Detail & Related papers (2023-11-28T11:23:34Z) - Stable Segment Anything Model [79.9005670886038]
The Segment Anything Model (SAM) achieves remarkable promptable segmentation given high-quality prompts.
This paper presents the first comprehensive analysis on SAM's segmentation stability across a diverse spectrum of prompt qualities.
Our solution, termed Stable-SAM, offers several advantages: 1) improved SAM's segmentation stability across a wide range of prompt qualities, while 2) retaining SAM's powerful promptable segmentation efficiency and generality.
arXiv Detail & Related papers (2023-11-27T12:51:42Z) - Improving Sharpness-Aware Minimization with Fisher Mask for Better
Generalization on Language Models [93.85178920914721]
Fine-tuning large pretrained language models on a limited training corpus usually suffers from poor computation.
We propose a novel optimization procedure, namely FSAM, which introduces a Fisher mask to improve the efficiency and performance of SAM.
We show that FSAM consistently outperforms the vanilla SAM by 0.671.98 average score among four different pretrained models.
arXiv Detail & Related papers (2022-10-11T14:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.