Optimizing T and CNOT Gates in Quantum Ripple-Carry Adders and Comparators
- URL: http://arxiv.org/abs/2401.17921v3
- Date: Tue, 28 May 2024 08:02:17 GMT
- Title: Optimizing T and CNOT Gates in Quantum Ripple-Carry Adders and Comparators
- Authors: Maxime Remaud,
- Abstract summary: The ripple-carry strategy for the addition and comparison of two n-bit numbers is presented.
In particular, we consider the adders presented by Cuccaro et al. and Takahashi et al.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The state of the art of quantum circuits using the ripple-carry strategy for the addition and comparison of two n-bit numbers is presented, as well as optimizations in the Clifford+T gate set, both in terms of CNOT-depth and T-depth, or CNOT-count and T-count. In particular, we consider the adders presented by Cuccaro et al. and Takahashi et al., and exhibit an adder with a T-depth of 3n and a CNOT-depth of 8n, while without optimization of the original circuits, a T-depth of 6n is expected. Note that we have focused here on quantum ripple-carry adders using at most one ancilla, without any approximation of the 3-qubit gates involved (Toffoli, Peres and TR) or any strategy involving a measurement.
Related papers
- Optimization and Synthesis of Quantum Circuits with Global Gates [44.99833362998488]
We use global interactions, such as the Global Molmer-Sorensen gate present in ion trap hardware, to optimize and synthesize quantum circuits.<n>The algorithm is based on the ZX-calculus and uses a specialized circuit extraction routine that groups entangling gates into Global MolmerSorensen gates.<n>We benchmark the algorithm in a variety of circuits, and show how it improves their performance under state-of-the-art hardware considerations.
arXiv Detail & Related papers (2025-07-28T10:25:31Z) - Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - Resource Optimized Quantum Squaring Circuit [0.7673339435080445]
Quantum squaring operation is useful building block in implementing quantum algorithms.
Quantum circuits could be made fault-tolerant by using error correcting codes and fault-tolerant quantum gates.
In this paper, we present a novel integer squaring architecture optimized for T-count, CNOT-count, T-depth, CNOT-depth, and $KQ_T$ that produces no garbage outputs.
arXiv Detail & Related papers (2024-06-04T01:04:01Z) - PTQ4DiT: Post-training Quantization for Diffusion Transformers [52.902071948957186]
Post-training Quantization (PTQ) has emerged as a fast and data-efficient solution that can significantly reduce computation and memory footprint.
We propose PTQ4DiT, a specifically designed PTQ method for DiTs.
We demonstrate that our PTQ4DiT successfully quantizes DiTs to 8-bit precision while preserving comparable generation ability.
arXiv Detail & Related papers (2024-05-25T02:02:08Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Optimising quantum circuits is generally hard [0.0]
We find that many gate optimisation problems for approximately universal quantum circuits are NP-hard.
We show that for any non-Clifford gate $G$ it is NP-hard to optimise the $G$-count over the Clifford+$G$ gate set.
arXiv Detail & Related papers (2023-09-12T09:35:23Z) - Optimization at the Interface of Unitary and Non-unitary Quantum
Operations in PCOAST [0.3496513815948205]
Pauli-based Circuit Optimization, Analysis and Synthesis Toolchain (PCOAST) introduced as framework for optimizing quantum circuits.
In this paper, we focus on the set of subroutines which look to optimize the PCOAST graph in cases involving unitary and non-unitary operations.
We evaluate the PCOAST optimization subroutines using the Intel Quantum SDK on examples of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-05-16T22:58:14Z) - Quantum Fourier Addition, Simplified to Toffoli Addition [92.18777020401484]
We present the first systematic translation of the QFT-addition circuit into a Toffoli-based adder.
Instead of using approximate decompositions of the gates from the QFT circuit, it is more efficient to merge gates.
arXiv Detail & Related papers (2022-09-30T02:36:42Z) - Experimental Realization of Two Qutrits Gate with Tunable Coupling in
Superconducting Circuits [11.881366909450376]
Gate-based quantum computation has been extensively investigated using quantum circuits based on qubits.
One of the essential elements for qutrit-based quantum computation, two-qutrit quantum gate, remains a major challenge.
We propose and demonstrate a highly efficient and scalable two-qutrit quantum gate in superconducting quantum circuits.
arXiv Detail & Related papers (2022-06-22T16:33:58Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - T-count and Qubit Optimized Quantum Circuit Designs of Carry Lookahead
Adder [0.966840768820136]
Quantum circuits of arithmetic operations such as addition are needed to implement quantum algorithms in hardware.
Quantum circuits based on Clifford+T gates are used as they can be made tolerant to noise.
The T-count performance measure has become important in quantum circuit design.
arXiv Detail & Related papers (2020-04-04T01:07:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.