From Training-Free to Adaptive: Empirical Insights into MLLMs' Understanding of Detection Information
- URL: http://arxiv.org/abs/2401.17981v3
- Date: Thu, 19 Dec 2024 11:25:34 GMT
- Title: From Training-Free to Adaptive: Empirical Insights into MLLMs' Understanding of Detection Information
- Authors: Qirui Jiao, Daoyuan Chen, Yilun Huang, Yaliang Li, Ying Shen,
- Abstract summary: Vision detection models excel at recognizing fine-grained image details.
One effective strategy is to infuse detection information in text format, which has proven simple and effective.
This paper addresses the question: How does training impact MLLMs' understanding of infused textual detection information?
- Score: 32.57246173437492
- License:
- Abstract: Despite the impressive capabilities of Multimodal Large Language Models (MLLMs) in integrating text and image modalities, challenges remain in accurately interpreting detailed visual elements. Vision detection models excel at recognizing fine-grained image details, prompting researchers to use them to enhance MLLMs. One effective strategy is to infuse detection information in text format, which has proven simple and effective. However, most studies utilize this method without training, leaving the potential of adaptive training largely unexplored. Adaptive training could significantly enhance MLLMs' comprehension of unique inputs while filtering out irrelevant information. This paper addresses the crucial question: How does training impact MLLMs' understanding of infused textual detection information? We systematically experiment with various representative models to evaluate the effects of training-free, retraining, and fine-tuning strategies. We also examine the influence of training on MLLMs' original abilities and the interchangeability of detection models. Our findings indicate that fine-tuning a pre-trained MLLM to incorporate textual detection information delivers superior results compared to training-free and retraining methods, improving performance by 6.71% across 10 widely recognized benchmarks. Furthermore, fine-tuning enables MLLMs to retain performance enhancements even when detection models are swapped, indicating improved understanding of formatted textual data. We release our codes to support further exploration of fusion strategies for vision detection models and the enhancement of MLLMs' fine-grained multimodal capabilities.
Related papers
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
Large Language Models (LLMs) have been employed for generating entirely new data instances and providing more cost-effective annotations.
This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques.
arXiv Detail & Related papers (2025-02-17T12:58:17Z) - Visual RAG: Expanding MLLM visual knowledge without fine-tuning [5.341192792319891]
This paper introduces Visual RAG, that synergically combines the MLLMs capability to learn from the context, with a retrieval mechanism.
In this way, the resulting system is not limited to the knowledge extracted from the training data, but can be updated rapidly and easily without fine-tuning.
It greatly reduces the computational costs for improving the model image classification performance, and augments the model knowledge to new visual domains and tasks it was not trained for.
arXiv Detail & Related papers (2025-01-18T17:43:05Z) - Enhancing Instruction-Following Capability of Visual-Language Models by Reducing Image Redundancy [37.471419716572086]
There is a significant gap in instruction-following capabilities between Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)
We propose Visual-Modality Token Compression (VMTC) and Cross-Modality Attention Inhibition (CMAI) strategies to alleviate this gap.
arXiv Detail & Related papers (2024-11-23T05:03:32Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
We propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs)
We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map.
Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point.
arXiv Detail & Related papers (2024-07-31T11:40:29Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - How Does the Textual Information Affect the Retrieval of Multimodal In-Context Learning? [11.374310255084753]
We introduce a novel supervised MLLM-retriever MSIER that employs a neural network to select examples that enhance multimodal in-context learning efficiency.
This approach is validated through extensive testing across three distinct tasks, demonstrating the method's effectiveness.
This exploration paves the way for future advancements, highlighting the potential for refined in-context learning in MLLMs through the strategic use of multimodal data.
arXiv Detail & Related papers (2024-04-19T13:05:37Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.