Nanomechanically-induced nonequilibrium quantum phase transition to a self-organized density wave of a Bose-Einstein condensate
- URL: http://arxiv.org/abs/2401.18015v2
- Date: Tue, 23 Jul 2024 16:05:46 GMT
- Title: Nanomechanically-induced nonequilibrium quantum phase transition to a self-organized density wave of a Bose-Einstein condensate
- Authors: Milan Radonjić, Leon Mixa, Axel Pelster, Michael Thorwart,
- Abstract summary: We report on a nonequilibrium quantum phase transition (NQPT) in a hybrid quantum many-body system.
The NQPT can be both discontinuous and continuous for a certain interval of transition frequencies and is purely discontinuous outside of it.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report on a nonequilibrium quantum phase transition (NQPT) in a hybrid quantum many-body system consisting of a vibrational mode of a damped nanomembrane interacting optomechanically with a cavity, whose output light couples to two internal states of an ultracold Bose gas held in an external quasi-one-dimensional box potential. For small effective membrane-atom couplings, the system is in a homogeneous Bose-Einstein condensate (BEC) steady state, with no membrane displacement. Depending on the transition frequency between the two internal atomic states, either one or both internal states are occupied. By increasing the atom-membrane couplings, the system transitions to a symmetry-broken self-organized BEC phase, which is characterized by a considerably displaced membrane steady-state and density-wave-like BEC profiles. This NQPT can be both discontinuous and continuous for a certain interval of transition frequencies and is purely discontinuous outside of it.
Related papers
- Longitudinal (curvature) couplings of an $N$-level qudit to a
superconducting resonator at the adiabatic limit and beyond [0.0]
We investigate the coupling between a multi-level system, or qudit, and a superconducting (SC) resonator's electromagnetic field.
For the first time, we derive Hamiltonians describing the longitudinal multi-level interactions in a general dispersive regime.
We provide examples illustrating the transition from adiabatic to dispersive coupling in different qubit systems.
arXiv Detail & Related papers (2023-12-05T20:33:59Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Multi-Stability in Cavity QED with Spin-Orbit Coupled Bose-Einstein
Condensate [0.0]
We investigate the occurrence of steady-state multi-stability in a cavity system containing spin-orbit coupled Bose-Einstein condensate.
We show the emergence of multi-stable behavior of cavity photon number, which is unlike with previous investigation on cavity-atom systems.
We illustrate the emergence of secondary interface mediated by increasing the mechanical dissipation rate of the pseudo-spin states.
arXiv Detail & Related papers (2023-02-04T11:24:22Z) - Fermionization of a Few-Body Bose System Immersed into a Bose-Einstein
Condensate [0.0]
We study the recently introduced self-pinning transition [Phys. Rev. Lett. 128, 053401 (2022) in a quasi-one-dimensional two-component quantum gas.
As a result of the matter-wave backaction, the fermionization in the limit of infinite intraspecies repulsion occurs via a first-order phase transition to the self-pinned state.
The system also exhibits an additional super state for the immersed component if the interspecies interaction is able to overcome the intraspecies repulsion.
arXiv Detail & Related papers (2023-02-02T08:07:35Z) - Superglass formation in an atomic BEC with competing long-range
interactions [0.0]
We study a quantum many-body system with two competing and substantially different long-range interaction potentials.
The instability towards density order can give way to a superglass phase, i.e., a super disordered amorphous solid.
arXiv Detail & Related papers (2021-09-29T20:38:18Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Bose-Einstein condensates in an atom-optomechanical system with
effective global non-uniform interaction [1.6637373649145606]
We consider a hybrid atom-optomechanical system consisting of a mechanical membrane inside an optical cavity and an atomic Bose-Einstein condensate outside the cavity.
We derive the cavity-mediated effective atom-atom interaction potential, and find that it is non-uniform, site-dependent, and does not decay as the interatomic distance increases.
We show that the presence of this effective interaction breaks the Z$$ symmetry of the system and gives rise to new quantum phases and phase transitions.
arXiv Detail & Related papers (2020-12-29T02:22:41Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.