Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators
- URL: http://arxiv.org/abs/2402.00069v1
- Date: Tue, 30 Jan 2024 19:27:16 GMT
- Title: Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators
- Authors: Mika Markus M\"uller, Alexander Richard Manfred Borst, Konstantin
L\"ubeck, Alexander Louis-Ferdinand Jung, Oliver Bringmann
- Abstract summary: Manufacturers of AI-integrated products face a critical challenge: selecting an accelerator that aligns with their product's performance requirements.
The Abstract Computer Architecture Description Language (ACADL) is a concise formalization of computer architecture block diagrams.
In this paper, we demonstrate how to use the ACADL to model AI hardware accelerators, use their ACADL description to map DNNs onto them, and explain the timing simulation semantics to gather performance results.
- Score: 77.89070422157178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) has witnessed remarkable growth, particularly
through the proliferation of Deep Neural Networks (DNNs). These powerful models
drive technological advancements across various domains. However, to harness
their potential in real-world applications, specialized hardware accelerators
are essential. This demand has sparked a market for parameterizable AI hardware
accelerators offered by different vendors.
Manufacturers of AI-integrated products face a critical challenge: selecting
an accelerator that aligns with their product's performance requirements. The
decision involves choosing the right hardware and configuring a suitable set of
parameters. However, comparing different accelerator design alternatives
remains a complex task. Often, engineers rely on data sheets, spreadsheet
calculations, or slow black-box simulators, which only offer a coarse
understanding of the performance characteristics.
The Abstract Computer Architecture Description Language (ACADL) is a concise
formalization of computer architecture block diagrams, which helps to
communicate computer architecture on different abstraction levels and allows
for inferring performance characteristics. In this paper, we demonstrate how to
use the ACADL to model AI hardware accelerators, use their ACADL description to
map DNNs onto them, and explain the timing simulation semantics to gather
performance results.
Related papers
- Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI.
As the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios.
This tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators.
arXiv Detail & Related papers (2024-07-12T09:24:34Z) - DEAP: Design Space Exploration for DNN Accelerator Parallelism [0.0]
Large Language Models (LLMs) are becoming increasingly complex and powerful to train and serve.
This paper showcases how hardware and software co-design can come together and allow us to create customized hardware systems.
arXiv Detail & Related papers (2023-12-24T02:43:01Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs [14.397623940689487]
Graphcore Intelligence Processing Unit (IPU), Sambanova Reconfigurable Dataflow Unit (RDU), and enhanced GPU platforms are reviewed.
This research provides a preliminary evaluation and comparison of these commercial AI/ML accelerators.
arXiv Detail & Related papers (2023-11-08T01:06:25Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
The shift towards ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
In this survey, we review the state-of-the-art ReRAM-based Deep Neural Networks (DNNs) many-core accelerators.
arXiv Detail & Related papers (2021-09-08T21:11:48Z) - How to Reach Real-Time AI on Consumer Devices? Solutions for
Programmable and Custom Architectures [7.085772863979686]
Deep neural networks (DNNs) have led to large strides in various Artificial Intelligence (AI) inference tasks, such as object and speech recognition.
deploying such AI models across commodity devices faces significant challenges.
We present techniques for achieving real-time performance following a cross-stack approach.
arXiv Detail & Related papers (2021-06-21T11:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.