Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs
- URL: http://arxiv.org/abs/2311.04417v3
- Date: Tue, 19 Mar 2024 06:31:52 GMT
- Title: Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs
- Authors: Hongwu Peng, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin Barker, Ang Li,
- Abstract summary: Graphcore Intelligence Processing Unit (IPU), Sambanova Reconfigurable Dataflow Unit (RDU), and enhanced GPU platforms are reviewed.
This research provides a preliminary evaluation and comparison of these commercial AI/ML accelerators.
- Score: 14.397623940689487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The relentless advancement of artificial intelligence (AI) and machine learning (ML) applications necessitates the development of specialized hardware accelerators capable of handling the increasing complexity and computational demands. Traditional computing architectures, based on the von Neumann model, are being outstripped by the requirements of contemporary AI/ML algorithms, leading to a surge in the creation of accelerators like the Graphcore Intelligence Processing Unit (IPU), Sambanova Reconfigurable Dataflow Unit (RDU), and enhanced GPU platforms. These hardware accelerators are characterized by their innovative data-flow architectures and other design optimizations that promise to deliver superior performance and energy efficiency for AI/ML tasks. This research provides a preliminary evaluation and comparison of these commercial AI/ML accelerators, delving into their hardware and software design features to discern their strengths and unique capabilities. By conducting a series of benchmark evaluations on common DNN operators and other AI/ML workloads, we aim to illuminate the advantages of data-flow architectures over conventional processor designs and offer insights into the performance trade-offs of each platform. The findings from our study will serve as a valuable reference for the design and performance expectations of research prototypes, thereby facilitating the development of next-generation hardware accelerators tailored for the ever-evolving landscape of AI/ML applications. Through this analysis, we aspire to contribute to the broader understanding of current accelerator technologies and to provide guidance for future innovations in the field.
Related papers
- Performance and Power: Systematic Evaluation of AI Workloads on Accelerators with CARAML [0.0]
The CARAML benchmark suite is employed to assess performance and energy consumption during the training of large language models and computer vision models.
CarAML provides a compact, automated, and reproducible framework for assessing the performance and energy of ML workloads.
arXiv Detail & Related papers (2024-09-19T12:43:18Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI.
As the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios.
This tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators.
arXiv Detail & Related papers (2024-07-12T09:24:34Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
Manufacturers of AI-integrated products face a critical challenge: selecting an accelerator that aligns with their product's performance requirements.
The Abstract Computer Architecture Description Language (ACADL) is a concise formalization of computer architecture block diagrams.
In this paper, we demonstrate how to use the ACADL to model AI hardware accelerators, use their ACADL description to map DNNs onto them, and explain the timing simulation semantics to gather performance results.
arXiv Detail & Related papers (2024-01-30T19:27:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Comprehensive Performance Study of Large Language Models on Novel AI
Accelerators [2.88634411143577]
Large language models (LLMs) are being considered as a promising approach to address some of the challenging problems.
Specialized AI accelerator hardware systems have recently become available for accelerating AI applications.
arXiv Detail & Related papers (2023-10-06T21:55:57Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
The shift towards ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
In this survey, we review the state-of-the-art ReRAM-based Deep Neural Networks (DNNs) many-core accelerators.
arXiv Detail & Related papers (2021-09-08T21:11:48Z) - Convergence of Artificial Intelligence and High Performance Computing on
NSF-supported Cyberinfrastructure [3.4291439418246177]
Artificial Intelligence (AI) applications have powered transformational solutions for big data challenges in industry and technology.
As AI continues to evolve into a computing paradigm endowed with statistical and mathematical rigor, it has become apparent that single- GPU solutions for training, validation, and testing are no longer sufficient.
This realization has been driving the confluence of AI and high performance computing to reduce time-to-insight.
arXiv Detail & Related papers (2020-03-18T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.