Distance and Collision Probability Estimation from Gaussian Surface Models
- URL: http://arxiv.org/abs/2402.00186v2
- Date: Wed, 17 Apr 2024 14:54:56 GMT
- Title: Distance and Collision Probability Estimation from Gaussian Surface Models
- Authors: Kshitij Goel, Wennie Tabib,
- Abstract summary: Continuous-space collision probability estimation is critical for uncertainty-aware motion planning.
Most collision detection and avoidance approaches assume the robot is modeled as a sphere, but ellipsoidal representations provide tighter approximations.
State-of-the-art methods derive the Euclidean distance and gradient by processing raw point clouds.
- Score: 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes continuous-space methodologies to estimate the collision probability, Euclidean distance and gradient between an ellipsoidal robot model and an environment surface modeled as a set of Gaussian distributions. Continuous-space collision probability estimation is critical for uncertainty-aware motion planning. Most collision detection and avoidance approaches assume the robot is modeled as a sphere, but ellipsoidal representations provide tighter approximations and enable navigation in cluttered and narrow spaces. State-of-the-art methods derive the Euclidean distance and gradient by processing raw point clouds, which is computationally expensive for large workspaces. Recent advances in Gaussian surface modeling (e.g. mixture models, splatting) enable compressed and high-fidelity surface representations. Few methods exist to estimate continuous-space occupancy from such models. They require Gaussians to model free space and are unable to estimate the collision probability, Euclidean distance and gradient for an ellipsoidal robot. The proposed methods bridge this gap by extending prior work in ellipsoid-to-ellipsoid Euclidean distance and collision probability estimation to Gaussian surface models. A geometric blending approach is also proposed to improve collision probability estimation. The approaches are evaluated with numerical 2D and 3D experiments using real-world point cloud data. Methods for efficient calculation of these quantities are demonstrated to execute within a few microseconds per ellipsoid pair using a single-thread on low-power CPUs of modern embedded computers
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic simulations, rendering, and reconstruction.
A prevalent approach in current deep learning is the set-based approach which measures the discrepancy between two surfaces by comparing two randomly sampled point-clouds from the two meshes with Chamfer pseudo-distance.
We propose a novel metric for learning mesh deformation, defined by sliced Wasserstein distance on meshes represented as probability measures that generalize the set-based approach.
arXiv Detail & Related papers (2023-05-27T19:10:19Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient
Flow [12.455057637445174]
We propose a new algorithm to compute the nonparametric maximum likelihood estimator (NPMLE) in a Gaussian mixture model.
Our method is based on gradient descent over the space of probability measures equipped with the Wasserstein-Fisher-Rao geometry.
We conduct extensive numerical experiments to confirm the effectiveness of the proposed algorithm.
arXiv Detail & Related papers (2023-01-04T18:59:35Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - Exact and Bounded Collision Probability for Motion Planning under
Gaussian Uncertainty [1.3535770763481902]
We present an approach for computing the collision probability under Gaussian distributed motion.
The collision condition is formulated as the distance between ellipsoids.
We provide a tight upper bound that can be computed much faster during online planning.
arXiv Detail & Related papers (2021-10-12T20:45:18Z) - Probabilistic Inference of Simulation Parameters via Parallel
Differentiable Simulation [34.30381620584878]
To accurately reproduce measurements from the real world, simulators need to have an adequate model of the physical system.
We address the latter problem of estimating parameters through a Bayesian inference approach.
We leverage GPU code generation and differentiable simulation to evaluate the likelihood and its gradient for many particles in parallel.
arXiv Detail & Related papers (2021-09-18T03:05:44Z) - Gaussian Process Subspace Regression for Model Reduction [7.41244589428771]
Subspace-valued functions arise in a wide range of problems, including parametric reduced order modeling (PROM)
In PROM, each parameter point can be associated with a subspace, which is used for Petrov-Galerkin projections of large system matrices.
We propose a novel Bayesian non model for subspace prediction: the Gaussian Process Subspace regression (GPS) model.
arXiv Detail & Related papers (2021-07-09T20:41:23Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.