Decentralised, Collaborative, and Privacy-preserving Machine Learning for Multi-Hospital Data
- URL: http://arxiv.org/abs/2402.00205v2
- Date: Sun, 28 Apr 2024 16:00:01 GMT
- Title: Decentralised, Collaborative, and Privacy-preserving Machine Learning for Multi-Hospital Data
- Authors: Congyu Fang, Adam Dziedzic, Lin Zhang, Laura Oliva, Amol Verma, Fahad Razak, Nicolas Papernot, Bo Wang,
- Abstract summary: We propose Decentralized, Collaborative, and Privacy-preserving ML for Multi-Hospital Data (DeCaPH)
We demonstrate the generalizability and power of DeCaPH on three distinct tasks using real-world distributed medical datasets.
- Score: 31.106733834322394
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine Learning (ML) has demonstrated its great potential on medical data analysis. Large datasets collected from diverse sources and settings are essential for ML models in healthcare to achieve better accuracy and generalizability. Sharing data across different healthcare institutions is challenging because of complex and varying privacy and regulatory requirements. Hence, it is hard but crucial to allow multiple parties to collaboratively train an ML model leveraging the private datasets available at each party without the need for direct sharing of those datasets or compromising the privacy of the datasets through collaboration. In this paper, we address this challenge by proposing Decentralized, Collaborative, and Privacy-preserving ML for Multi-Hospital Data (DeCaPH). It offers the following key benefits: (1) it allows different parties to collaboratively train an ML model without transferring their private datasets; (2) it safeguards patient privacy by limiting the potential privacy leakage arising from any contents shared across the parties during the training process; and (3) it facilitates the ML model training without relying on a centralized server. We demonstrate the generalizability and power of DeCaPH on three distinct tasks using real-world distributed medical datasets: patient mortality prediction using electronic health records, cell-type classification using single-cell human genomes, and pathology identification using chest radiology images. We demonstrate that the ML models trained with DeCaPH framework have an improved utility-privacy trade-off, showing it enables the models to have good performance while preserving the privacy of the training data points. In addition, the ML models trained with DeCaPH framework in general outperform those trained solely with the private datasets from individual parties, showing that DeCaPH enhances the model generalizability.
Related papers
- EPIC: Enhancing Privacy through Iterative Collaboration [4.199844472131922]
Traditional machine learning techniques require centralized data collection and processing.
Privacy, ownership, and stringent regulation issues exist when pooling medical data into centralized storage.
The Federated learning (FL) approach overcomes such issues by setting up a central aggregator server and a shared global model.
arXiv Detail & Related papers (2024-11-07T20:10:34Z) - Improving the Classification Effect of Clinical Images of Diseases for Multi-Source Privacy Protection [0.0]
Privacy data protection in the medical field poses challenges to data sharing.
Traditional centralized training methods are difficult to apply due to violations of privacy protection principles.
We propose a medical privacy data training framework based on data vectors.
arXiv Detail & Related papers (2024-08-23T12:52:24Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Patchwork Learning: A Paradigm Towards Integrative Analysis across
Diverse Biomedical Data Sources [40.32772510980854]
"patchwork learning" (PL) is a paradigm that integrates information from disparate datasets composed of different data modalities.
PL allows the simultaneous utilization of complementary data sources while preserving data privacy.
We present the concept of patchwork learning and its current implementations in healthcare, exploring the potential opportunities and applicable data sources.
arXiv Detail & Related papers (2023-05-10T14:50:33Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Machine Learning in Precision Medicine to Preserve Privacy via
Encryption [2.099922236065961]
We propose a generic machine learning with encryption (MLE) framework, which we used to build an ML model that predicts cancer.
Our framework's prediction accuracy is slightly higher than that of the most recent studies conducted on the same dataset.
We provide an open-source repository that contains the design and implementation of the framework, all the ML experiments and code, and the final predictive model deployed to a free cloud service.
arXiv Detail & Related papers (2021-02-05T20:22:15Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
We propose the first syntactic approach for offering privacy in the context of federated learning.
Our approach aims to maximize utility or model performance, while supporting a defensible level of privacy.
We perform a comprehensive empirical evaluation on two important problems in the healthcare domain, using real-world electronic health data of 1 million patients.
arXiv Detail & Related papers (2020-02-21T02:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.