Improving the Classification Effect of Clinical Images of Diseases for Multi-Source Privacy Protection
- URL: http://arxiv.org/abs/2408.13038v1
- Date: Fri, 23 Aug 2024 12:52:24 GMT
- Title: Improving the Classification Effect of Clinical Images of Diseases for Multi-Source Privacy Protection
- Authors: Tian Bowen, Xu Zhengyang, Yin Zhihao, Wang Jingying, Yue Yutao,
- Abstract summary: Privacy data protection in the medical field poses challenges to data sharing.
Traditional centralized training methods are difficult to apply due to violations of privacy protection principles.
We propose a medical privacy data training framework based on data vectors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy data protection in the medical field poses challenges to data sharing, limiting the ability to integrate data across hospitals for training high-precision auxiliary diagnostic models. Traditional centralized training methods are difficult to apply due to violations of privacy protection principles. Federated learning, as a distributed machine learning framework, helps address this issue, but it requires multiple hospitals to participate in training simultaneously, which is hard to achieve in practice. To address these challenges, we propose a medical privacy data training framework based on data vectors. This framework allows each hospital to fine-tune pre-trained models on private data, calculate data vectors (representing the optimization direction of model parameters in the solution space), and sum them up to generate synthetic weights that integrate model information from multiple hospitals. This approach enhances model performance without exchanging private data or requiring synchronous training. Experimental results demonstrate that this method effectively utilizes dispersed private data resources while protecting patient privacy. The auxiliary diagnostic model trained using this approach significantly outperforms models trained independently by a single hospital, providing a new perspective for resolving the conflict between medical data privacy protection and model training and advancing the development of medical intelligence.
Related papers
- FedDP: Privacy-preserving method based on federated learning for histopathology image segmentation [2.864354559973703]
This paper addresses the dispersed nature and privacy sensitivity of medical image data by employing a federated learning framework.
The proposed method, FedDP, minimally impacts model accuracy while effectively safeguarding the privacy of cancer pathology image data.
arXiv Detail & Related papers (2024-11-07T08:02:58Z) - Controllable Synthetic Clinical Note Generation with Privacy Guarantees [7.1366477372157995]
In this paper, we introduce a novel method to "clone" datasets containing Personal Health Information (PHI)
Our approach ensures that the cloned datasets retain the essential characteristics and utility of the original data without compromising patient privacy.
We conduct utility testing to evaluate the performance of machine learning models trained on the cloned datasets.
arXiv Detail & Related papers (2024-09-12T07:38:34Z) - Medical Federated Model with Mixture of Personalized and Sharing
Components [31.068735334318088]
We propose a new personalized framework of federated learning to handle the problem.
It successfully yields personalized models based on awareness of similarity between local data.
Also, we propose an effective method to reduce the computational cost, which improves computation efficiency significantly.
arXiv Detail & Related papers (2023-06-26T07:50:32Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
Collaborative machine learning techniques such as federated learning (FL) enable the training of models on effectively larger datasets without data transfer.
Recent initiatives have demonstrated that segmentation models trained with FL can achieve performance similar to locally trained models.
However, FL is not a fully privacy-preserving technique and privacy-centred attacks can disclose confidential patient data.
arXiv Detail & Related papers (2021-07-06T12:57:32Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Chasing Your Long Tails: Differentially Private Prediction in Health
Care Settings [34.26542589537452]
Methods for differentially private (DP) learning provide a general-purpose approach to learn models with privacy guarantees.
Modern methods for DP learning ensure privacy through mechanisms that censor information judged as too unique.
We use state-of-the-art methods for DP learning to train privacy-preserving models in clinical prediction tasks.
arXiv Detail & Related papers (2020-10-13T19:56:37Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
We propose the first syntactic approach for offering privacy in the context of federated learning.
Our approach aims to maximize utility or model performance, while supporting a defensible level of privacy.
We perform a comprehensive empirical evaluation on two important problems in the healthcare domain, using real-world electronic health data of 1 million patients.
arXiv Detail & Related papers (2020-02-21T02:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.