Can Generative AI Support Patients' & Caregivers' Informational Needs? Towards Task-Centric Evaluation Of AI Systems
- URL: http://arxiv.org/abs/2402.00234v2
- Date: Fri, 28 Feb 2025 05:46:53 GMT
- Title: Can Generative AI Support Patients' & Caregivers' Informational Needs? Towards Task-Centric Evaluation Of AI Systems
- Authors: Shreya Rajagopal, Jae Ho Sohn, Hari Subramonyam, Shiwali Mohan,
- Abstract summary: We develop an evaluation paradigm that centers human understanding and decision-making.<n>We study the utility of generative AI systems in supporting people in a concrete task.<n>We evaluate two state-of-the-art generative AI systems against the radiologist's responses.
- Score: 0.7124736158080937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI systems such as ChatGPT and Claude are built upon language models that are typically evaluated for accuracy on curated benchmark datasets. Such evaluation paradigms measure predictive and reasoning capabilities of language models but do not assess if they can provide information that is useful to people. In this paper, we take some initial steps in developing an evaluation paradigm that centers human understanding and decision-making. We study the utility of generative AI systems in supporting people in a concrete task - making sense of clinical reports and imagery in order to make a clinical decision. We conducted a formative need-finding study in which participants discussed chest computed tomography (CT) scans and associated radiology reports of a fictitious close relative with a cardiothoracic radiologist. Using thematic analysis of the conversation between participants and medical experts, we identified commonly occurring themes across interactions, including clarifying medical terminology, locating the problems mentioned in the report in the scanned image, understanding disease prognosis, discussing the next diagnostic steps, and comparing treatment options. Based on these themes, we evaluated two state-of-the-art generative AI systems against the radiologist's responses. Our results reveal variability in the quality of responses generated by the models across various themes. We highlight the importance of patient-facing generative AI systems to accommodate a diverse range of conversational themes, catering to the real-world informational needs of patients.
Related papers
- Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography [0.0]
This study presents a comprehensive evaluation of radiomics-based and deep learning-based approaches for disease detection in chest radiography.
It focuses on COVID-19, lung opacity, and viral pneumonia.
The results aim to inform the integration of AI-driven diagnostic tools in clinical practice.
arXiv Detail & Related papers (2025-04-16T16:54:37Z) - ECG-Expert-QA: A Benchmark for Evaluating Medical Large Language Models in Heart Disease Diagnosis [8.059062779882554]
ECG-Expert-QA is a comprehensive dataset for evaluating diagnostic capabilities in electrocardiogram (ECG) interpretation.
It combines real-world clinical ECG data with systematically generated synthetic cases, covering 12 essential diagnostic tasks.
Key innovation is the support for multi-turn dialogues, enabling the development of conversational medical AI systems.
arXiv Detail & Related papers (2025-02-16T13:28:55Z) - ProMRVL-CAD: Proactive Dialogue System with Multi-Round Vision-Language Interactions for Computer-Aided Diagnosis [0.7430974817507225]
We develop an LLM-based dialogue system, namely proactive multi-round vision-language interactions for computer-aided diagnosis (ProMRVL-CAD)
The proposed ProMRVL-CAD system allows proactive dialogue to provide patients with constant and reliable medical access via an integration of knowledge graph into a recommendation system.
arXiv Detail & Related papers (2025-02-15T01:14:23Z) - Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation [0.0]
Large language models (LLMs) have shown impressive capabilities in natural language processing tasks, including dialogue generation.
This research aims to conduct a novel comparative analysis of two prominent techniques, fine-tuning with LoRA and the Retrieval-Augmented Generation framework.
arXiv Detail & Related papers (2025-02-04T11:50:40Z) - Designing a Robust Radiology Report Generation System [1.0878040851637998]
This paper outlines the design of a robust radiology report generation system by integrating different modules and highlighting best practices.
We believe that these best practices could improve automatic radiology report generation, augment radiologists in decision making, and expedite diagnostic workflow.
arXiv Detail & Related papers (2024-11-02T06:38:04Z) - A Two-Stage Proactive Dialogue Generator for Efficient Clinical Information Collection Using Large Language Model [0.6926413609535759]
We propose a diagnostic dialogue system to automate the patient information collection procedure.
By exploiting medical history and conversation logic, our conversation agents can pose multi-round clinical queries.
Our experimental results on a real-world medical conversation dataset show that our model can generate clinical queries that mimic the conversation style of real doctors.
arXiv Detail & Related papers (2024-10-02T19:32:11Z) - ReXplain: Translating Radiology into Patient-Friendly Video Reports [5.787653511498558]
ReXplain is an AI-driven system that generates patient-friendly video reports for radiology findings.
Our proof-of-concept study with five board-certified radiologists indicates that ReXplain could accurately deliver radiological information.
arXiv Detail & Related papers (2024-10-01T06:41:18Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Towards Knowledge-Infused Automated Disease Diagnosis Assistant [14.150224660741939]
We build a diagnosis assistant to assist doctors, which identifies diseases based on patient-doctor interaction.
We propose a two-channel, discourse-aware disease diagnosis model (KI-DDI), where the first channel encodes patient-doctor communication.
In the next stage, the conversation and knowledge graph embeddings are infused together and fed to a deep neural network for disease identification.
arXiv Detail & Related papers (2024-05-18T05:18:50Z) - Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
A review [2.2268038840298714]
We review the state-of-the-art machine learning studies that adopted the fusion of biomedical knowledge and data.
We provide an overview of diverse forms of knowledge representation and current strategies of knowledge integration into machine learning pipelines.
arXiv Detail & Related papers (2024-01-12T07:01:36Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.