Non-Markovian Dynamics in Fiber Delay-line Buffers
- URL: http://arxiv.org/abs/2402.00274v1
- Date: Thu, 1 Feb 2024 01:50:51 GMT
- Title: Non-Markovian Dynamics in Fiber Delay-line Buffers
- Authors: Kim Fook Lee and Prem Kumar
- Abstract summary: We study the non-Markovian effect on a two-photon polarization entangled state.
We derive a non-Markovian probability function for the buffered photon and its paired photon.
We find that Werner's well-known separability criterion occurs at the buffer time of about 0.9$,$ms.
- Score: 4.169915659794567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the non-Markovian effect on a two-photon polarization entangled
state in which one photon from the pair is stored in a fiber delay-line buffer.
We propose a model of a photonic qubit coupled to fiber birefringence and a
fiber reservoir representing the environment. We analytically derive a
non-Markovian probability function for the buffered photon and its paired
photon. To verify the probability function, we perform the full quantum state
tomography of the photon pairs. We further exploit the measures of quantum
mutual information for studying the quantumness of the buffered photon and its
paired photon. We find that Werner's well-known separability criterion occurs
at the buffer time of about 0.9$\,$ms. Furthermore, our result implies that the
non-zero quantum discord can surpass Werner's criterion, and hence the quantum
bi-partite correlation can exist for a buffer time greater than 0.9$\,$ms.
Related papers
- Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter [0.0]
We demonstrate deterministic and reconfigurable graph state generation with optical solid-state integrated quantum emitters.
We perform quantum state tomography of two successive photons, measuring Bell state fidelities up to 0.80$pm$0.04 and concurrences up to 0.69$pm$0.09.
This simple optical scheme, compatible with commercially available quantum dot-based single photon sources, brings us a step closer to fault-tolerant quantum computing with spins and photons.
arXiv Detail & Related papers (2024-10-30T23:59:54Z) - Bandwidth-tunable Telecom Single Photons Enabled by Low-noise Optomechanical Transduction [45.37752717923078]
Single-photon sources are of fundamental importance to emergent quantum technologies.
Nano-structured optomechanical crystals provide an attractive platform for single photon generation.
Optical absorption heating has thus far prevented these systems from being widely used in practical applications.
arXiv Detail & Related papers (2024-10-14T18:00:00Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - The quantum beam splitter with many partially indistinguishable photons:
multiphotonic interference and asymptotic classical correspondence [44.99833362998488]
We present the analysis of the quantum two-port interferometer in the $n rightarrow infty$ limit of $n$ partially indistinguishable photons.
Our main result is that the output distribution is dominated by the $O(sqrtn)$ channels around a certain $j*$ that depends on the degree of indistinguishability.
The form is essentially the doubly-humped semi-classical envelope of the distribution that would arise from $2 j*$ indistinguishable photons, and which reproduces the corresponding classical intensity distribution.
arXiv Detail & Related papers (2023-12-28T01:48:26Z) - Eliminating temporal correlation in quantum-dot entangled photon source
by quantum interference [5.617271950792649]
We improve multi-photon entanglement ftextcompwordmark idelity from $(58.7pm 2.2)%$ to $(75.5pm 2.0)%$ by utilizing quantum interferences.
Our work paves the way to realize scalable and high-quality multi-photon states from quantum dots.
arXiv Detail & Related papers (2022-12-26T12:46:04Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Improved heralded single-photon source with a photon-number-resolving
superconducting nanowire detector [0.0]
We herald a single photon at telecommunication wavelength using a superconducting nanowire detector.
We develop an analytical model using a phase-space formalism that encompasses all multiphoton effects and relevant imperfections.
Our experiment, built using fiber-coupled and off-the-shelf components, delineates a path to engineering ideal sources of single photons.
arXiv Detail & Related papers (2021-12-21T18:48:34Z) - Quantum Interference of Identical Photons from Remote GaAs Quantum Dots [0.45507178426690204]
Photonic quantum technology provides a viable route to quantum communication, quantum simulation, and quantum information processing.
Recent progress has seen the realisation of boson sampling using 20 single-photons and quantum key distribution over hundreds of kilometres.
For applications, a significant roadblock is the poor quantum coherence upon interfering single photons created by independent quantum dots.
Here, we demonstrate two-photon interference with near-unity visibility ($93.0pm0.8$)% using photons from two completely separate GaAs quantum dots.
arXiv Detail & Related papers (2021-06-07T18:00:03Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Weakly invasive metrology: quantum advantage and physical
implementations [0.0]
We show that arbitrarily intense coherent states can obtain information at a rate that scales at most linearly with $N_rm abs$ and $T$.
We discuss an implementation in cavity QED, where Fock states are both prepared and measured by coupling atomic ensembles to the cavities.
arXiv Detail & Related papers (2020-06-22T10:14:36Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.