Guided Interpretable Facial Expression Recognition via Spatial Action Unit Cues
- URL: http://arxiv.org/abs/2402.00281v5
- Date: Tue, 14 May 2024 12:26:54 GMT
- Title: Guided Interpretable Facial Expression Recognition via Spatial Action Unit Cues
- Authors: Soufiane Belharbi, Marco Pedersoli, Alessandro Lameiras Koerich, Simon Bacon, Eric Granger,
- Abstract summary: A new learning strategy is proposed to explicitly incorporate au cues into classifier training.
We show that our strategy can improve layer-wise interpretability without degrading classification performance.
- Score: 55.97779732051921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although state-of-the-art classifiers for facial expression recognition (FER) can achieve a high level of accuracy, they lack interpretability, an important feature for end-users. Experts typically associate spatial action units (\aus) from a codebook to facial regions for the visual interpretation of expressions. In this paper, the same expert steps are followed. A new learning strategy is proposed to explicitly incorporate \au cues into classifier training, allowing to train deep interpretable models. During training, this \au codebook is used, along with the input image expression label, and facial landmarks, to construct a \au heatmap that indicates the most discriminative image regions of interest w.r.t the facial expression. This valuable spatial cue is leveraged to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with \au heatmaps. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with \au maps, simulating the expert decision process. Our strategy only relies on image class expression for supervision, without additional manual annotations. Our new strategy is generic, and can be applied to any deep CNN- or transformer-based classifier without requiring any architectural change or significant additional training time. Our extensive evaluation on two public benchmarks \rafdb, and \affectnet datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on class activation mapping (CAM) methods, and show that our approach can also improve CAM interpretability.
Related papers
- Context-Based Visual-Language Place Recognition [4.737519767218666]
A popular approach to vision-based place recognition relies on low-level visual features.
We introduce a novel VPR approach that remains robust to scene changes and does not require additional training.
Our method constructs semantic image descriptors by extracting pixel-level embeddings using a zero-shot, language-driven semantic segmentation model.
arXiv Detail & Related papers (2024-10-25T06:59:11Z) - Spatial Action Unit Cues for Interpretable Deep Facial Expression Recognition [55.97779732051921]
State-of-the-art classifiers for facial expression recognition (FER) lack interpretability, an important feature for end-users.
A new learning strategy is proposed to explicitly incorporate AU cues into classifier training, allowing to train deep interpretable models.
Our new strategy is generic, and can be applied to any deep CNN- or transformer-based classifier without requiring any architectural change or significant additional training time.
arXiv Detail & Related papers (2024-10-01T10:42:55Z) - Linking in Style: Understanding learned features in deep learning models [0.0]
Convolutional neural networks (CNNs) learn abstract features to perform object classification.
We propose an automatic method to visualize and systematically analyze learned features in CNNs.
arXiv Detail & Related papers (2024-09-25T12:28:48Z) - MaskInversion: Localized Embeddings via Optimization of Explainability Maps [49.50785637749757]
MaskInversion generates a context-aware embedding for a query image region specified by a mask at test time.
It can be used for a broad range of tasks, including open-vocabulary class retrieval, referring expression comprehension, as well as for localized captioning and image generation.
arXiv Detail & Related papers (2024-07-29T14:21:07Z) - LICO: Explainable Models with Language-Image Consistency [39.869639626266554]
This paper develops a Language-Image COnsistency model for explainable image classification, termed LICO.
We first establish a coarse global manifold structure alignment by minimizing the distance between the distributions of image and language features.
We then achieve fine-grained saliency maps by applying optimal transport (OT) theory to assign local feature maps with class-specific prompts.
arXiv Detail & Related papers (2023-10-15T12:44:33Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
We propose to pretrain networks for semantic segmentation by predicting the relative location of image parts.
We control the difficulty of the task by masking a subset of the reference patch features visible to those of the query.
Our experiments show that this location-aware pretraining leads to representations that transfer competitively to several challenging semantic segmentation benchmarks.
arXiv Detail & Related papers (2022-12-05T16:24:29Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - Seed the Views: Hierarchical Semantic Alignment for Contrastive
Representation Learning [116.91819311885166]
We propose a hierarchical semantic alignment strategy via expanding the views generated by a single image to textbfCross-samples and Multi-level representation.
Our method, termed as CsMl, has the ability to integrate multi-level visual representations across samples in a robust way.
arXiv Detail & Related papers (2020-12-04T17:26:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.