Linking in Style: Understanding learned features in deep learning models
- URL: http://arxiv.org/abs/2409.16865v1
- Date: Wed, 25 Sep 2024 12:28:48 GMT
- Title: Linking in Style: Understanding learned features in deep learning models
- Authors: Maren H. Wehrheim, Pamela Osuna-Vargas, Matthias Kaschube,
- Abstract summary: Convolutional neural networks (CNNs) learn abstract features to perform object classification.
We propose an automatic method to visualize and systematically analyze learned features in CNNs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) learn abstract features to perform object classification, but understanding these features remains challenging due to difficult-to-interpret results or high computational costs. We propose an automatic method to visualize and systematically analyze learned features in CNNs. Specifically, we introduce a linking network that maps the penultimate layer of a pre-trained classifier to the latent space of a generative model (StyleGAN-XL), thereby enabling an interpretable, human-friendly visualization of the classifier's representations. Our findings indicate a congruent semantic order in both spaces, enabling a direct linear mapping between them. Training the linking network is computationally inexpensive and decoupled from training both the GAN and the classifier. We introduce an automatic pipeline that utilizes such GAN-based visualizations to quantify learned representations by analyzing activation changes in the classifier in the image domain. This quantification allows us to systematically study the learned representations in several thousand units simultaneously and to extract and visualize units selective for specific semantic concepts. Further, we illustrate how our method can be used to quantify and interpret the classifier's decision boundary using counterfactual examples. Overall, our method offers systematic and objective perspectives on learned abstract representations in CNNs. https://github.com/kaschube-lab/LinkingInStyle.git
Related papers
- Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - On the Transition from Neural Representation to Symbolic Knowledge [2.2528422603742304]
We propose a Neural-Symbolic Transitional Dictionary Learning (TDL) framework that employs an EM algorithm to learn a transitional representation of data.
We implement the framework with a diffusion model by regarding the decomposition of input as a cooperative game.
We additionally use RL enabled by the Markovian of diffusion models to further tune the learned prototypes.
arXiv Detail & Related papers (2023-08-03T19:29:35Z) - Feature Activation Map: Visual Explanation of Deep Learning Models for
Image Classification [17.373054348176932]
In this work, a post-hoc interpretation tool named feature activation map (FAM) is proposed.
FAM can interpret deep learning models without FC layers as a classifier.
Experiments conducted on ten deep learning models for few-shot image classification, contrastive learning image classification and image retrieval tasks demonstrate the effectiveness of the proposed FAM algorithm.
arXiv Detail & Related papers (2023-07-11T05:33:46Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - Extracting Semantic Knowledge from GANs with Unsupervised Learning [65.32631025780631]
Generative Adversarial Networks (GANs) encode semantics in feature maps in a linearly separable form.
We propose a novel clustering algorithm, named KLiSH, which leverages the linear separability to cluster GAN's features.
KLiSH succeeds in extracting fine-grained semantics of GANs trained on datasets of various objects.
arXiv Detail & Related papers (2022-11-30T03:18:16Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
We present an analytic framework to systematically identify hidden units within image classification and image generation networks.
First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts.
Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes.
arXiv Detail & Related papers (2020-09-10T17:59:10Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.