Attention-based Dynamic Multilayer Graph Neural Networks for Loan Default Prediction
- URL: http://arxiv.org/abs/2402.00299v2
- Date: Mon, 24 Jun 2024 20:32:18 GMT
- Title: Attention-based Dynamic Multilayer Graph Neural Networks for Loan Default Prediction
- Authors: Sahab Zandi, Kamesh Korangi, María Óskarsdóttir, Christophe Mues, Cristián Bravo,
- Abstract summary: We present a model for credit risk assessment leveraging a dynamic multilayer network built from a Graph Neural Network and a Recurrent Neural Network.
We test our methodology in a behavioural credit scoring context using a dataset provided by U.S. mortgage financier Freddie Mac.
- Score: 4.0990577062436815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Whereas traditional credit scoring tends to employ only individual borrower- or loan-level predictors, it has been acknowledged for some time that connections between borrowers may result in default risk propagating over a network. In this paper, we present a model for credit risk assessment leveraging a dynamic multilayer network built from a Graph Neural Network and a Recurrent Neural Network, each layer reflecting a different source of network connection. We test our methodology in a behavioural credit scoring context using a dataset provided by U.S. mortgage financier Freddie Mac, in which different types of connections arise from the geographical location of the borrower and their choice of mortgage provider. The proposed model considers both types of connections and the evolution of these connections over time. We enhance the model by using a custom attention mechanism that weights the different time snapshots according to their importance. After testing multiple configurations, a model with GAT, LSTM, and the attention mechanism provides the best results. Empirical results demonstrate that, when it comes to predicting probability of default for the borrowers, our proposed model brings both better results and novel insights for the analysis of the importance of connections and timestamps, compared to traditional methods.
Related papers
- Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs)
The proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets.
The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions.
arXiv Detail & Related papers (2024-10-05T20:49:05Z) - A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios [11.141688859736805]
We introduce a machine learning model for credit risk by combining tree-boosting with a latent-temporal- Gaussian process model accounting for frailty correlation.
We find that both predictive default probabilities for individual predictive loan portfolio loss distributions are more accurate compared to conventional independent linear hazard models.
arXiv Detail & Related papers (2024-10-03T15:10:55Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Multilayer Network Analysis for Improved Credit Risk Prediction [5.33024001730262]
We develop a multilayer personalized PageRank algorithm that allows quantifying the strength of the default exposure of any borrower in the network.
Results suggest default risk is highest when an individual is connected to many defaulters, but this risk is mitigated by the size of the neighbourhood of the individual.
arXiv Detail & Related papers (2020-10-19T14:39:53Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
Link prediction estimates the next relationship in dynamic networks.
The use of adjacency matrix to represent dynamically evolving networks limits the ability to analytically learn from heterogeneous, sparse, or forming networks.
We propose a new method of canonically representing heterogeneous time-evolving activities as a temporally parameterized network model.
arXiv Detail & Related papers (2020-06-06T07:28:03Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z) - Linking Bank Clients using Graph Neural Networks Powered by Rich
Transactional Data [2.1169216065483996]
We propose a new graph neural network model, which uses not only the topological structure of the network but rich time-series data available for the graph nodes and edges.
The proposed model outperforms the existing approaches, with a significant gap in ROC AUC score on link prediction problem and also allows to improve the quality of credit scoring.
arXiv Detail & Related papers (2020-01-23T10:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.