論文の概要: Hidding the Ghostwriters: An Adversarial Evaluation of AI-Generated
Student Essay Detection
- arxiv url: http://arxiv.org/abs/2402.00412v1
- Date: Thu, 1 Feb 2024 08:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 16:01:47.859771
- Title: Hidding the Ghostwriters: An Adversarial Evaluation of AI-Generated
Student Essay Detection
- Title(参考訳): hidding the ghostwriters:ai生成学生エッセイ検出の敵対的評価
- Authors: Xinlin Peng, Ying Zhou, Ben He, Le Sun, Yingfei Sun
- Abstract要約: 大規模言語モデル(LLM)は、テキスト生成タスクにおいて顕著な機能を示した。
これらのモデルの利用には、盗作行為、偽ニュースの普及、教育演習における問題など、固有のリスクが伴う。
本稿では,AI生成した学生エッセイデータセットであるAIG-ASAPを構築し,このギャップを埋めることを目的とする。
- 参考スコア(独自算出の注目度): 29.433764586753956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have exhibited remarkable capabilities in text
generation tasks. However, the utilization of these models carries inherent
risks, including but not limited to plagiarism, the dissemination of fake news,
and issues in educational exercises. Although several detectors have been
proposed to address these concerns, their effectiveness against adversarial
perturbations, specifically in the context of student essay writing, remains
largely unexplored. This paper aims to bridge this gap by constructing
AIG-ASAP, an AI-generated student essay dataset, employing a range of text
perturbation methods that are expected to generate high-quality essays while
evading detection. Through empirical experiments, we assess the performance of
current AIGC detectors on the AIG-ASAP dataset. The results reveal that the
existing detectors can be easily circumvented using straightforward automatic
adversarial attacks. Specifically, we explore word substitution and sentence
substitution perturbation methods that effectively evade detection while
maintaining the quality of the generated essays. This highlights the urgent
need for more accurate and robust methods to detect AI-generated student essays
in the education domain.
- Abstract(参考訳): 大規模言語モデル(llm)はテキスト生成タスクにおいて顕著な能力を示している。
しかし、これらのモデルの利用には、盗作行為、偽ニュースの普及、教育演習における問題など、固有のリスクが伴う。
これらの懸念に対処するためにいくつかの検出器が提案されているが、特に学生エッセイ執筆の文脈において、敵対的な摂動に対する効果はほとんど解明されていない。
本稿では,aiが生成する学生エッセイデータセットであるaiig-asapを用いて,高品質エッセイを生成しつつ検出を回避し,そのギャップを埋めることを目的とする。
実験によりAIGC検出器の性能をAIG-ASAPデータセット上で評価した。
その結果、既存の検出器は簡単な自動逆襲で容易に回避できることが判明した。
具体的には,生成したエッセイの品質を維持しつつ,検出を効果的に回避する単語置換法と文置換摂動法について検討する。
これは、教育分野におけるAI生成の学生エッセイを検出する、より正確で堅牢な方法に対する緊急の必要性を強調している。
関連論文リスト
- Navigating the Shadows: Unveiling Effective Disturbances for Modern AI Content Detectors [24.954755569786396]
AIテキスト検出は、人間と機械が生成したコンテンツを区別するために現れた。
近年の研究では、これらの検出システムは、しばしば頑丈さを欠き、摂動テキストを効果的に区別する難しさを欠いていることが示されている。
我々の研究は、非公式な文章と専門的な文章の両方で現実世界のシナリオをシミュレートし、現在の検出器のアウト・オブ・ボックスのパフォーマンスを探求する。
論文 参考訳(メタデータ) (2024-06-13T08:37:01Z) - Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
そこで本研究では,機械生成コンテンツの小さな摂動を回避して検出を回避すべく,より広いレベルの敵攻撃のためのフレームワークを提案する。
我々は、ホワイトボックスとブラックボックスの2つの攻撃設定を検討し、現在の検出モデルのロバスト性を高める可能性を評価するために、動的シナリオにおける逆学習を採用する。
実験の結果、現在の検出モデルは10秒で妥協でき、機械が生成したテキストを人間の書き起こしコンテンツとして誤分類する結果となった。
論文 参考訳(メタデータ) (2024-04-02T12:49:22Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
本研究では,条件付きテキスト生成と入力コンテキストの特性を考慮した意味認識型透かしアルゴリズムを提案する。
実験結果から,提案手法は様々なテキスト生成モデルに対して大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2023-07-25T20:24:22Z) - FacTool: Factuality Detection in Generative AI -- A Tool Augmented
Framework for Multi-Task and Multi-Domain Scenarios [87.12753459582116]
より広い範囲のタスクは、生成モデルによって処理されると、事実エラーを含むリスクが増大する。
大規模言語モデルにより生成されたテキストの事実誤りを検出するためのタスクおよびドメインに依存しないフレームワークであるFacToolを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:51Z) - OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples [44.118047780553006]
OUTFOXは、LLM生成テキスト検出器の堅牢性を改善するフレームワークであり、検出器と攻撃者の両方が互いの出力を考慮できるようにする。
実験の結果,提案した検出器は攻撃者が生成したテキストの検出性能を最大41.3点F1スコアまで向上させることがわかった。
この検出器は最先端の検知性能を示し、96.9ポイントのF1スコアまで到達し、既存の検出器を非攻撃テキストで打ち負かした。
論文 参考訳(メタデータ) (2023-07-21T17:40:47Z) - Testing of Detection Tools for AI-Generated Text [0.0]
本稿では,人工知能生成テキストの検出ツールの機能について検討する。
精度と誤差型分析に基づいて評価する。
この研究は12の公開ツールと2つの商用システムをカバーする。
論文 参考訳(メタデータ) (2023-06-21T16:29:44Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
本稿では,強力な大規模言語モデル(LLM)に対するMGT検出のための最初のベンチマークフレームワークを提案する。
一般に単語が多ければ多いほど性能が向上し,ほとんどの検出手法はトレーニングサンプルをはるかに少なくして同様の性能が得られることを示す。
本研究は, テキスト属性タスクにおいて, モデルに基づく検出手法が依然として有効であることを示す。
論文 参考訳(メタデータ) (2023-03-26T21:12:36Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
LLMの規制されていない使用は、盗作、偽ニュースの生成、スパムなど、悪意のある結果をもたらす可能性がある。
最近の研究は、生成されたテキスト出力に存在する特定のモデルシグネチャを使用するか、透かし技術を適用してこの問題に対処しようとしている。
本稿では,これらの検出器は実用シナリオにおいて信頼性が低いことを示す。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。