論文の概要: Superfiltering: Weak-to-Strong Data Filtering for Fast Instruction-Tuning
- arxiv url: http://arxiv.org/abs/2402.00530v2
- Date: Fri, 7 Jun 2024 20:28:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 03:49:29.601900
- Title: Superfiltering: Weak-to-Strong Data Filtering for Fast Instruction-Tuning
- Title(参考訳): Superfiltering: 高速インストラクションチューニングのための弱ストロングデータフィルタリング
- Authors: Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, Tianyi Zhou,
- Abstract要約: より小さく弱いモデルを使って、より大きくより強いモデルを微調整できるだろうか?
これにより、より小さく、より効率的なモデルを使用して、より大きな言語モデルをトレーニングするために使用される命令データをフィルタリングすることができる。
主にデータフィルタリングを高速化するだけでなく、フィルタリングされたデータ精細のLLMは、標準ベンチマークでさらにパフォーマンスが向上する。
- 参考スコア(独自算出の注目度): 43.10197671420528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning is critical to improve LLMs but usually suffers from low-quality and redundant data. Data filtering for instruction tuning has proved important in improving both the efficiency and performance of the tuning process. But it also leads to extra cost and computation due to the involvement of LLMs in this process. To reduce the filtering cost, we study Superfiltering: Can we use a smaller and weaker model to select data for finetuning a larger and stronger model? Despite the performance gap between weak and strong language models, we find their highly consistent capability to perceive instruction difficulty and data selection results. This enables us to use a much smaller and more efficient model to filter the instruction data used to train a larger language model. Not only does it largely speed up the data filtering, but the filtered-data-finetuned LLM achieves even better performance on standard benchmarks. Extensive experiments validate the efficacy and efficiency of our approach.
- Abstract(参考訳): 命令チューニングはLLMを改善するために重要であるが、通常、低品質で冗長なデータに悩まされる。
インストラクションチューニングのためのデータフィルタリングは、チューニングプロセスの効率と性能を改善する上で重要であることが証明された。
しかし、このプロセスにはLCMが関与しているため、コストや計算のコストも高くなる。
より小さく弱いモデルを使って、より大きくより強いモデルを微調整できるだろうか?
弱い言語モデルと強い言語モデルのパフォーマンスの差にもかかわらず、命令の難しさとデータ選択の結果を知覚する非常に一貫性のある能力を見出した。
これにより、より小さく、より効率的なモデルを使用して、より大きな言語モデルをトレーニングするために使用される命令データをフィルタリングすることができる。
主にデータフィルタリングを高速化するだけでなく、フィルタリングされたデータ精細のLLMは、標準ベンチマークでさらにパフォーマンスが向上する。
大規模な実験により、我々のアプローチの有効性と効率が検証された。
関連論文リスト
- A Systematic Investigation of Distilling Large Language Models into Cross-Encoders for Passage Re-ranking [79.35822270532948]
大規模言語モデル (LLM) から蒸留したクロスエンコーダは、手動でラベル付けされたデータに微調整されたクロスエンコーダよりも効果的であることが多い。
我々は新しい蒸留データセットである Rank-DistiLLM を構築し,リリースする。
論文 参考訳(メタデータ) (2024-05-13T16:51:53Z) - From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search [19.070305201045954]
テキストベースの人物検索では、プライバシ保護と手動アノテーションの困難なタスクに対する懸念に対処するため、データ生成が主流となっている。
構築されたデータセット内のデータのサブセットのみが決定的な役割を果たすことを観察する。
我々は、この重要なデータサブセットを識別するためのフィルタリングアルゴリズムと、光微細チューニングのためのWoRA学習戦略を含む新しいフィルタリング-WoRAパラダイムを導入する。
論文 参考訳(メタデータ) (2024-04-16T05:29:14Z) - Boosting Disfluency Detection with Large Language Model as Disfluency Generator [8.836888435915077]
本稿では,拡散検出のための軽量なデータ拡張手法を提案する。
拡張データとして,大言語モデル(LLM)を用いて不自由な文を生成する。
文の質を向上させるために不確実性を考慮したデータフィルタリング手法を適用する。
論文 参考訳(メタデータ) (2024-03-13T04:14:33Z) - Your Vision-Language Model Itself Is a Strong Filter: Towards
High-Quality Instruction Tuning with Data Selection [59.11430077029321]
視覚言語モデル(VLM)のための新しいデータセット選択手法であるSelf-Filterを導入する。
第1段階では、VLMと共同で学習する訓練指導の難しさを評価するためのスコアリングネットワークを考案する。
第2段階では、トレーニングされたスコアネットを使用して、各命令の難易度を測定し、最も難しいサンプルを選択し、類似したサンプルをペナルティ化し、多様性を促進する。
論文 参考訳(メタデータ) (2024-02-19T20:08:48Z) - Selective Reflection-Tuning: Student-Selected Data Recycling for LLM Instruction-Tuning [39.73918872205541]
最近の多くの手法はデータ品質の改善に重点を置いているが、学生モデルとの互換性を見落としていることが多い。
本稿では,教師のLLMのリフレクションとイントロスペクションを相乗化して既存のデータ品質を改善する新パラダイムであるSelective Reflection-Tuningを紹介する。
この教師と学生の協調作業により、高品質で生徒互換の授業応答ペアが作成され、結果としてサンプル効率のよい指導チューニングがもたらされる。
論文 参考訳(メタデータ) (2024-02-15T17:06:21Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z) - An Empirical Exploration in Quality Filtering of Text Data [0.0]
GPT型言語モデルにおいて、アグレッシブフィルタリングは、幅広い下流タスクにおけるモデル品質の低下につながることが判明した。
これは、プロキシメトリックに対して十分に強く最適化することが、真の目的に対するパフォーマンスを損なうためである、と推測する。
論文 参考訳(メタデータ) (2021-09-02T04:02:51Z) - Adversarial Filters of Dataset Biases [96.090959788952]
大規模なニューラルモデルでは、言語とビジョンベンチマークで人間レベルのパフォーマンスが実証されている。
それらの性能は、敵対的またはアウト・オブ・ディストリビューションのサンプルで著しく低下する。
このようなデータセットバイアスを逆フィルタするAFLiteを提案する。
論文 参考訳(メタデータ) (2020-02-10T21:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。