論文の概要: Diffusion-based Light Field Synthesis
- arxiv url: http://arxiv.org/abs/2402.00575v1
- Date: Thu, 1 Feb 2024 13:13:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 15:27:45.515174
- Title: Diffusion-based Light Field Synthesis
- Title(参考訳): 拡散に基づく光電界合成
- Authors: Ruisheng Gao, Yutong Liu, Zeyu Xiao, Zhiwei Xiong
- Abstract要約: LFdiffは、LF合成に適した拡散ベースの生成フレームワークである。
本稿では,遠絡型雑音推定ネットワークDistgUnetを提案する。
広範囲な実験により、LFdiffは視覚的に快く、不均一に制御可能な光電場を合成する際に優れていることが示されている。
- 参考スコア(独自算出の注目度): 50.24624071354433
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Light fields (LFs), conducive to comprehensive scene radiance recorded across
angular dimensions, find wide applications in 3D reconstruction, virtual
reality, and computational photography.However, the LF acquisition is
inevitably time-consuming and resource-intensive due to the mainstream
acquisition strategy involving manual capture or laborious software
synthesis.Given such a challenge, we introduce LFdiff, a straightforward yet
effective diffusion-based generative framework tailored for LF synthesis, which
adopts only a single RGB image as input.LFdiff leverages disparity estimated by
a monocular depth estimation network and incorporates two distinctive
components: a novel condition scheme and a noise estimation network tailored
for LF data.Specifically, we design a position-aware warping condition scheme,
enhancing inter-view geometry learning via a robust conditional signal.We then
propose DistgUnet, a disentanglement-based noise estimation network, to harness
comprehensive LF representations.Extensive experiments demonstrate that LFdiff
excels in synthesizing visually pleasing and disparity-controllable light
fields with enhanced generalization capability.Additionally, comprehensive
results affirm the broad applicability of the generated LF data, spanning
applications like LF super-resolution and refocusing.
- Abstract(参考訳): Light fields (LFs), conducive to comprehensive scene radiance recorded across angular dimensions, find wide applications in 3D reconstruction, virtual reality, and computational photography.However, the LF acquisition is inevitably time-consuming and resource-intensive due to the mainstream acquisition strategy involving manual capture or laborious software synthesis.Given such a challenge, we introduce LFdiff, a straightforward yet effective diffusion-based generative framework tailored for LF synthesis, which adopts only a single RGB image as input.LFdiff leverages disparity estimated by a monocular depth estimation network and incorporates two distinctive components: a novel condition scheme and a noise estimation network tailored for LF data.Specifically, we design a position-aware warping condition scheme, enhancing inter-view geometry learning via a robust conditional signal.We then propose DistgUnet, a disentanglement-based noise estimation network, to harness comprehensive LF representations.Extensive experiments demonstrate that LFdiff excels in synthesizing visually pleasing and disparity-controllable light fields with enhanced generalization capability.Additionally, comprehensive results affirm the broad applicability of the generated LF data, spanning applications like LF super-resolution and refocusing.
関連論文リスト
- LGFN: Lightweight Light Field Image Super-Resolution using Local Convolution Modulation and Global Attention Feature Extraction [5.461017270708014]
本稿では,LGFN という軽量なモデルを提案する。このモデルでは,異なるビューの局所的特徴とグローバル的特徴と,LF 画像 SR のための異なるチャネルの特徴を統合している。
我々のモデルは0.45Mのパラメータと19.33GのFLOPを持つ。
論文 参考訳(メタデータ) (2024-09-26T11:53:25Z) - Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
非視線画像(NLOS)は、その潜在的な応用により注目されている。
既存のNLOS再構成アプローチは、経験的物理的前提に依存して制約される。
本稿では,Learningable Path Compensation(LPC)とAdaptive Phasor Field(APF)の2つの主要な設計を含む,学習に基づく新しいソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-21T04:39:45Z) - LFIC-DRASC: Deep Light Field Image Compression Using Disentangled Representation and Asymmetrical Strip Convolution [51.909036244222904]
ディスタングル表現と非対称ストリップ畳み込みを用いたエンドツーエンドのディープLF画像圧縮法を提案する。
実験の結果,提案したLFIC-DRASCは平均20.5%のビットレート削減を達成した。
論文 参考訳(メタデータ) (2024-09-18T05:33:42Z) - LFSRDiff: Light Field Image Super-Resolution via Diffusion Models [18.20217829625834]
光電場(LF)画像超解像(SR)は、固有の不適切な性質のため難しい問題である。
主流のLF画像SR法は、一般的に決定論的アプローチを採用し、ピクセル単位の損失関数によって制御される1つの出力しか生成しない。
本稿では,最初の拡散型LF画像SRモデルであるLPSRDiffを紹介する。
論文 参考訳(メタデータ) (2023-11-27T07:31:12Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Disentangling Light Fields for Super-Resolution and Disparity Estimation [67.50796924758221]
光フィールド(LF)カメラは光線の強度と方向の両方を記録し、3Dシーンを4DLF画像にエンコードする。
空間的・角的な情報は様々な相違で高度に絡み合っているため、畳み込みニューラルネットワーク(CNN)がLF画像を処理することは困難である。
本稿では,この結合した情報をLF画像処理のために切り離すための汎用メカニズムを提案する。
論文 参考訳(メタデータ) (2022-02-22T01:04:41Z) - Scale-Consistent Fusion: from Heterogeneous Local Sampling to Global
Immersive Rendering [9.893045525907219]
画像に基づく幾何モデリングと、スパースに基づく新しいビュー合成は、バーチャルリアリティや没入型テレプレゼンスのような新興マルチメディアアプリケーションにとって難しいが重要な課題である。
LFカメラの普及により、LF画像(LFI)の撮影は通常の写真撮影と同じくらい便利になり、幾何情報も確実に推測できる。
本稿では,大域的幾何融合のための異なるキャプチャ間の分散確率ボリューム(DPV)を頑健に整合させる,新しいスケール一貫性ボリューム再スケーリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-17T14:27:08Z) - Deep Selective Combinatorial Embedding and Consistency Regularization
for Light Field Super-resolution [93.95828097088608]
ハンドヘルドデバイスが取得した光フィールド(LF)画像は通常、空間分解能の低下に悩まされる。
LF画像の高次元特性と複雑な幾何学構造は、従来の単一像SRよりも問題をより困難にしている。
本稿では,LFサブアパーチャ画像間のコヒーレンスを探索するための,新しい学習ベースLF空間SRフレームワークを提案する。
合成および実世界のLFデータセットに対する実験結果は、最先端手法に対する我々のアプローチの顕著な利点を示している。
論文 参考訳(メタデータ) (2020-09-26T08:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。