Continuous Unsupervised Domain Adaptation Using Stabilized
Representations and Experience Replay
- URL: http://arxiv.org/abs/2402.00580v1
- Date: Wed, 31 Jan 2024 05:09:14 GMT
- Title: Continuous Unsupervised Domain Adaptation Using Stabilized
Representations and Experience Replay
- Authors: Mohammad Rostami
- Abstract summary: We introduce an algorithm for tackling the problem of unsupervised domain adaptation (UDA) in continual learning (CL) scenarios.
Our solution is based on stabilizing the learned internal distribution to enhances the model generalization on new domains.
We leverage experience replay to overcome the problem of catastrophic forgetting, where the model loses previously acquired knowledge when learning new tasks.
- Score: 23.871860648919593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an algorithm for tackling the problem of unsupervised domain
adaptation (UDA) in continual learning (CL) scenarios. The primary objective is
to maintain model generalization under domain shift when new domains arrive
continually through updating a base model when only unlabeled data is
accessible in subsequent tasks. While there are many existing UDA algorithms,
they typically require access to both the source and target domain datasets
simultaneously. Conversely, existing CL approaches can handle tasks that all
have labeled data. Our solution is based on stabilizing the learned internal
distribution to enhances the model generalization on new domains. The internal
distribution is modeled by network responses in hidden layer. We model this
internal distribution using a Gaussian mixture model (GMM ) and update the
model by matching the internally learned distribution of new domains to the
estimated GMM. Additionally, we leverage experience replay to overcome the
problem of catastrophic forgetting, where the model loses previously acquired
knowledge when learning new tasks. We offer theoretical analysis to explain why
our algorithm would work. We also offer extensive comparative and analytic
experiments to demonstrate that our method is effective. We perform experiments
on four benchmark datasets to demonstrate that our approach is effective.
Related papers
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Non-stationary Domain Generalization: Theory and Algorithm [11.781050299571692]
In this paper, we study domain generalization in non-stationary environment.
We first examine the impact of environmental non-stationarity on model performance.
Then, we propose a novel algorithm based on adaptive invariant representation learning.
arXiv Detail & Related papers (2024-05-10T21:32:43Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Preserving Fairness in AI under Domain Shift [15.820660013260584]
Existing algorithms for ensuring fairness in AI use a single-shot training strategy.
We develop an algorithm to adapt a fair model to remain fair under domain shift.
arXiv Detail & Related papers (2023-01-29T06:13:40Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - Towards Data-Free Domain Generalization [12.269045654957765]
How can knowledge contained in models trained on different source data domains be merged into a single model that generalizes well to unseen target domains?
Prior domain generalization methods typically rely on using source domain data, making them unsuitable for private decentralized data.
We propose DEKAN, an approach that extracts and fuses domain-specific knowledge from the available teacher models into a student model robust to domain shift.
arXiv Detail & Related papers (2021-10-09T11:44:05Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Domain Adaptation in LiDAR Semantic Segmentation by Aligning Class
Distributions [9.581605678437032]
This work addresses the problem of unsupervised domain adaptation for LiDAR semantic segmentation models.
Our approach combines novel ideas on top of the current state-of-the-art approaches and yields new state-of-the-art results.
arXiv Detail & Related papers (2020-10-23T08:52:15Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.