Can we Constrain Concept Bottleneck Models to Learn Semantically Meaningful Input Features?
- URL: http://arxiv.org/abs/2402.00912v2
- Date: Tue, 30 Jul 2024 09:49:51 GMT
- Title: Can we Constrain Concept Bottleneck Models to Learn Semantically Meaningful Input Features?
- Authors: Jack Furby, Daniel Cunnington, Dave Braines, Alun Preece,
- Abstract summary: Concept Bottleneck Models (CBMs) are regarded as inherently interpretable because they first predict a set of human-defined concepts.
Current literature suggests that concept predictions often rely on irrelevant input features.
In this paper, we demonstrate that CBMs can learn to map concepts to semantically meaningful input features.
- Score: 0.6401548653313325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept Bottleneck Models (CBMs) are regarded as inherently interpretable because they first predict a set of human-defined concepts which are used to predict a task label. For inherent interpretability to be fully realised, and ensure trust in a model's output, it's desirable for concept predictions to use semantically meaningful input features. For instance, in an image, pixels representing a broken bone should contribute to predicting a fracture. However, current literature suggests that concept predictions often rely on irrelevant input features. We hypothesise that this occurs when dataset labels include inaccurate concept annotations, or the relationship between input features and concepts is unclear. In general, the effect of dataset labelling on concept representations remains an understudied area. In this paper, we demonstrate that CBMs can learn to map concepts to semantically meaningful input features, by utilising datasets with a clear link between the input features and the desired concept predictions. This is achieved, for instance, by ensuring multiple concepts do not always co-occur and, therefore provide a clear training signal for the CBM to distinguish the relevant input features for each concept. We validate our hypothesis on both synthetic and real-world image datasets, and demonstrate under the correct conditions, CBMs can learn to attribute semantically meaningful input features to the correct concept predictions.
Related papers
- MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPred is proposed that explains its predictions based on multi-modal concepts represented by training samples.
MulCPred is evaluated on multiple datasets and tasks.
arXiv Detail & Related papers (2024-09-14T14:15:28Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - On the Concept Trustworthiness in Concept Bottleneck Models [39.928868605678744]
Concept Bottleneck Models (CBMs) break down the reasoning process into the input-to-concept mapping and the concept-to-label prediction.
Despite the transparency of the concept-to-label prediction, the mapping from the input to the intermediate concept remains a black box.
A pioneering metric, referred to as concept trustworthiness score, is proposed to gauge whether the concepts are derived from relevant regions.
An enhanced CBM is introduced, enabling concept predictions to be made specifically from distinct parts of the feature map.
arXiv Detail & Related papers (2024-03-21T12:24:53Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordances are fundamental descriptors of relationships between actions, objects and effects.
This paper approaches the problem of an embodied agent exploring the world and learning these affordances autonomously from its sensory experiences.
arXiv Detail & Related papers (2024-02-08T22:05:45Z) - Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations [15.23014992362639]
Concept bottleneck models (CBMs) have been successful in providing concept-based interpretations for black-box deep learning models.
We propose Energy-based Concept Bottleneck Models (ECBMs)
Our ECBMs use a set of neural networks to define the joint energy of candidate (input, concept, class) quantifications.
arXiv Detail & Related papers (2024-01-25T12:46:37Z) - Do Concept Bottleneck Models Respect Localities? [14.77558378567965]
Concept-based methods explain model predictions using human-understandable concepts.
"Localities" involve using only relevant features when predicting a concept's value.
CBMs may not capture localities, even when independent concepts are localised to non-overlapping feature subsets.
arXiv Detail & Related papers (2024-01-02T16:05:23Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
Cross-modal Retrieval methods build similarity relations between vision and language modalities by jointly learning a common representation space.
However, the predictions are often unreliable due to the Aleatoric uncertainty, which is induced by low-quality data, e.g., corrupt images, fast-paced videos, and non-detailed texts.
We propose a novel Prototype-based Aleatoric Uncertainty Quantification (PAU) framework to provide trustworthy predictions by quantifying the uncertainty arisen from the inherent data ambiguity.
arXiv Detail & Related papers (2023-09-29T09:41:19Z) - Learn to explain yourself, when you can: Equipping Concept Bottleneck
Models with the ability to abstain on their concept predictions [21.94901195358998]
We show how to equip a neural network based classifier with the ability to abstain from predicting concepts when the concept labeling component is uncertain.
Our model learns to provide rationales for its predictions, but only whenever it is sure the rationale is correct.
arXiv Detail & Related papers (2022-11-21T18:07:14Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - Learning Interpretable Concept-Based Models with Human Feedback [36.65337734891338]
We propose an approach for learning a set of transparent concept definitions in high-dimensional data that relies on users labeling concept features.
Our method produces concepts that both align with users' intuitive sense of what a concept means, and facilitate prediction of the downstream label by a transparent machine learning model.
arXiv Detail & Related papers (2020-12-04T23:41:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.