Do Concept Bottleneck Models Respect Localities?
- URL: http://arxiv.org/abs/2401.01259v3
- Date: Sat, 31 Aug 2024 20:03:49 GMT
- Title: Do Concept Bottleneck Models Respect Localities?
- Authors: Naveen Raman, Mateo Espinosa Zarlenga, Juyeon Heo, Mateja Jamnik,
- Abstract summary: Concept-based methods explain model predictions using human-understandable concepts.
"Localities" involve using only relevant features when predicting a concept's value.
CBMs may not capture localities, even when independent concepts are localised to non-overlapping feature subsets.
- Score: 14.77558378567965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept-based methods explain model predictions using human-understandable concepts. These models require accurate concept predictors, yet the faithfulness of existing concept predictors to their underlying concepts is unclear. In this paper, we investigate the faithfulness of Concept Bottleneck Models (CBMs), a popular family of concept-based architectures, by looking at whether they respect "localities" in datasets. Localities involve using only relevant features when predicting a concept's value. When localities are not considered, concepts may be predicted based on spuriously correlated features, degrading performance and robustness. This work examines how CBM predictions change when perturbing model inputs, and reveals that CBMs may not capture localities, even when independent concepts are localised to non-overlapping feature subsets. Our empirical and theoretical results demonstrate that datasets with correlated concepts may lead to accurate but uninterpretable models that fail to learn localities. Overall, we find that CBM interpretability is fragile, as CBMs occasionally rely upon spurious features, necessitating further research into the robustness of concept predictors.
Related papers
- MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPred is proposed that explains its predictions based on multi-modal concepts represented by training samples.
MulCPred is evaluated on multiple datasets and tasks.
arXiv Detail & Related papers (2024-09-14T14:15:28Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - On the Concept Trustworthiness in Concept Bottleneck Models [39.928868605678744]
Concept Bottleneck Models (CBMs) break down the reasoning process into the input-to-concept mapping and the concept-to-label prediction.
Despite the transparency of the concept-to-label prediction, the mapping from the input to the intermediate concept remains a black box.
A pioneering metric, referred to as concept trustworthiness score, is proposed to gauge whether the concepts are derived from relevant regions.
An enhanced CBM is introduced, enabling concept predictions to be made specifically from distinct parts of the feature map.
arXiv Detail & Related papers (2024-03-21T12:24:53Z) - Can we Constrain Concept Bottleneck Models to Learn Semantically Meaningful Input Features? [0.6401548653313325]
Concept Bottleneck Models (CBMs) are regarded as inherently interpretable because they first predict a set of human-defined concepts.
Current literature suggests that concept predictions often rely on irrelevant input features.
In this paper, we demonstrate that CBMs can learn to map concepts to semantically meaningful input features.
arXiv Detail & Related papers (2024-02-01T10:18:43Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Sparse Linear Concept Discovery Models [11.138948381367133]
Concept Bottleneck Models (CBMs) constitute a popular approach where hidden layers are tied to human understandable concepts.
We propose a simple yet highly intuitive interpretable framework based on Contrastive Language Image models and a single sparse linear layer.
We experimentally show, our framework not only outperforms recent CBM approaches accuracy-wise, but it also yields high per example concept sparsity.
arXiv Detail & Related papers (2023-08-21T15:16:19Z) - Probabilistic Concept Bottleneck Models [26.789507935869107]
Interpretable models are designed to make decisions in a human-interpretable manner.
In this study, we address the ambiguity issue that can harm reliability.
We propose Probabilistic Concept Bottleneck Models (ProbCBM)
arXiv Detail & Related papers (2023-06-02T14:38:58Z) - Post-hoc Concept Bottleneck Models [11.358495577593441]
Concept Bottleneck Models (CBMs) map the inputs onto a set of interpretable concepts and use the concepts to make predictions.
CBMs are restrictive in practice as they require concept labels in the training data to learn the bottleneck and do not leverage strong pretrained models.
We show that we can turn any neural network into a PCBM without sacrificing model performance while still retaining interpretability benefits.
arXiv Detail & Related papers (2022-05-31T00:29:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.