Numerical linked-cluster expansions for two-dimensional spin models with continuous disorder distributions
- URL: http://arxiv.org/abs/2402.00931v2
- Date: Sun, 2 Jun 2024 23:38:26 GMT
- Title: Numerical linked-cluster expansions for two-dimensional spin models with continuous disorder distributions
- Authors: Mahmoud Abdelshafy, Marcos Rigol,
- Abstract summary: We show that numerical linked cluster expansions (NLCEs) allow one to obtain accurate low-temperature results for spin lattice models with continuous disorder distributions.
We consider both classical (Ising) and quantum (Heisenberg) spin-$frac12$ models and show that convergence can be achieved down to temperatures up to two orders of magnitude lower than the relevant energy scale.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that numerical linked cluster expansions (NLCEs) based on sufficiently large building blocks allow one to obtain accurate low-temperature results for the thermodynamic properties of spin lattice models with continuous disorder distributions. Specifically, we show that such results can be obtained computing the disorder averages in the NLCE clusters before calculating their weights. We provide a proof of concept using three different NLCEs based on L, square, and rectangle building blocks. We consider both classical (Ising) and quantum (Heisenberg) spin-$\frac{1}{2}$ models and show that convergence can be achieved down to temperatures that are up to two orders of magnitude lower than the relevant energy scale in the model. Additionally, we provide evidence that in one dimension one can obtain accurate results for observables such as the energy down to their ground-state values.
Related papers
- Confinement in the Transverse Field Ising model on the Heavy Hex lattice [0.0]
We study the emergence of confinement in the transverse field Ising model on a decorated hexagonal lattice.
We show how a quench from a broken symmetry state leads to striking nonthermal behaviour underpinned by persistent oscillations and saturation of the entanglement entropy.
arXiv Detail & Related papers (2024-02-02T16:50:20Z) - Reducing the number of qubits in quantum simulations of one dimensional many-body Hamiltonians [0.3495246564946556]
We investigate the Ising and Heisenberg models using the Block Renormalization Group Method (BRGM)
The success of BRGM in accurately characterizing the Ising model, even with a relatively small number of spins, underscores its robustness and utility in studying complex physical systems.
arXiv Detail & Related papers (2023-08-03T05:33:31Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Entanglement dynamics of thermofield double states in integrable models [0.0]
We study the entanglement dynamics of thermofield double (TFD) states in integrable spin chains and quantum field theories.
We show that, for a natural choice of the Hamiltonian eigenbasis, the TFD evolution may be interpreted as a quantum quench from an initial state.
We conjecture a formula for the entanglement dynamics, which is valid for both discrete and continuous integrable field theories.
arXiv Detail & Related papers (2021-12-03T16:40:36Z) - Simulating thermal density operators with cluster expansions and tensor
networks [0.0]
We benchmark this cluster tensor network operator (cluster TNO) for one-dimensional systems.
We use this formalism for representing the thermal density operator of a two-dimensional quantum spin system at a certain temperature as a single cluster TNO.
We find through a scaling analysis that the cluster-TNO approximation gives rise to a continuous phase transition in the correct universality class.
arXiv Detail & Related papers (2021-12-02T18:56:44Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Numerical linked cluster expansions for inhomogeneous systems [0.0]
We develop a numerical linked cluster expansion (NLCE) method that can be applied directly to inhomogeneous systems.
We show that NLCE can give moderate to dramatic improvement over an exact diagonalization of comparable computational cost.
arXiv Detail & Related papers (2020-05-06T23:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.