Entropy Production and the Role of Correlations in Quantum Brownian
Motion
- URL: http://arxiv.org/abs/2108.02599v1
- Date: Thu, 5 Aug 2021 13:11:05 GMT
- Title: Entropy Production and the Role of Correlations in Quantum Brownian
Motion
- Authors: Alessandra Colla and Heinz-Peter Breuer
- Abstract summary: We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
- Score: 77.34726150561087
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We perform a study on quantum entropy production, different kinds of
correlations, and their interplay in the driven Caldeira-Leggett model of
quantum Brownian motion. The model, taken with a large but finite number of
bath modes, is exactly solvable, and the assumption of a Gaussian initial state
leads to an efficient numerical simulation of all desired observables in a wide
range of model parameters. Our study is composed of three main parts. We first
compare two popular definitions of entropy production, namely the standard
weak-coupling formulation originally proposed by Spohn and later on extended to
the driven case by Deffner and Lutz, and the always-positive expression
introduced by Esposito, Lindenberg and van den Broeck, which relies on the
knowledge of the evolution of the bath. As a second study, we explore the
decomposition of the Esposito et al. entropy production into system-environment
and intra-environment correlations for different ranges of couplings and
temperatures. Lastly, we examine the evolution of quantum correlations between
the system and the environment, measuring entanglement through logarithmic
negativity.
Related papers
- Microscopic contributions to the entropy production at all times: From
nonequilibrium steady states to global thermalization [0.0]
We numerically study microscopic contributions to the entropy production for the single electron transistor.
We find that the entropy production is dominated for most times by microscopic deviations from thermality in the baths.
arXiv Detail & Related papers (2023-09-21T06:30:20Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - On the Convergence of the ELBO to Entropy Sums [3.345575993695074]
We show that the variational lower bound is at all stationary points of learning equal to a sum of entropies.
For a very large class of generative models, the variational lower bound is at all stationary points of learning.
arXiv Detail & Related papers (2022-09-07T11:33:32Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Entropy production and correlation spreading in the interaction between
particle detector and thermal baths [10.02300359702222]
We study the entropy production and correlation spreading in the interaction between Unruh-DeWitt-like particle detector and thermal baths.
We can observe that the entropy production implies quantum recurrence and shows periodicity.
arXiv Detail & Related papers (2021-11-07T11:11:34Z) - Contributions from populations and coherences in non-equilibrium entropy
production [0.0]
entropy produced when a quantum system is driven away from equilibrium can be decomposed in two parts, one related with populations and the other with quantum coherences.
We argue that, despite satisfying fluctuation theorems and having a clear resource-theoretic interpretation, this splitting has shortcomings.
Motivated by this, we provide here a complementary approach, where the entropy production is split in a way such that the contributions from populations and coherences are written in terms of a thermal state of a specially dephased Hamiltonian.
arXiv Detail & Related papers (2021-02-22T18:30:05Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.