論文の概要: Compositional Generative Modeling: A Single Model is Not All You Need
- arxiv url: http://arxiv.org/abs/2402.01103v3
- Date: Mon, 3 Jun 2024 23:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 13:17:49.431431
- Title: Compositional Generative Modeling: A Single Model is Not All You Need
- Title(参考訳): 構成生成モデリング:1つのモデルだけでは十分ではない
- Authors: Yilun Du, Leslie Kaelbling,
- Abstract要約: 我々は、より小さな生成モデルを構成することによって、より大規模な生成システムを構築するべきであると論じる。
このような構成的生成アプローチによって、よりデータ効率の良い方法で分布を学習できることを示す。
- 参考スコア(独自算出の注目度): 29.050431676226115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large monolithic generative models trained on massive amounts of data have become an increasingly dominant approach in AI research. In this paper, we argue that we should instead construct large generative systems by composing smaller generative models together. We show how such a compositional generative approach enables us to learn distributions in a more data-efficient manner, enabling generalization to parts of the data distribution unseen at training time. We further show how this enables us to program and construct new generative models for tasks completely unseen at training. Finally, we show that in many cases, we can discover separate compositional components from data.
- Abstract(参考訳): 大量のデータに基づいてトレーニングされた巨大なモノリシックな生成モデルは、AI研究においてますます支配的なアプローチになりつつある。
本稿では,より小さな生成モデルを構成することによって,より大規模な生成システムを構築するべきであると論じる。
このような構成的生成アプローチによって、よりデータ効率の良い方法で分布を学習し、トレーニング時に見つからないデータ分布の一部に一般化できることを示す。
さらに、トレーニングで完全に見えないタスクのための新しい生成モデルをプログラムし、構築することを可能にする方法を示す。
最後に、多くの場合、データから別々の構成成分を発見できることを示す。
関連論文リスト
- Fitting Multiple Machine Learning Models with Performance Based Clustering [8.763425474439552]
従来の機械学習のアプローチは、データが単一の生成メカニズムから来ると仮定している。
本稿では,特徴値と対象値の関係に応じてデータをグループ化することで,この仮定を解消するクラスタリングフレームワークを提案する。
フレームワークをストリーミングデータを持つアプリケーションに拡張し、モデルのアンサンブルを使用して結果を生成する。
論文 参考訳(メタデータ) (2024-11-10T19:38:35Z) - Knowledge Fusion By Evolving Weights of Language Models [5.354527640064584]
本稿では,複数のモデルを統一モデルに統合するアプローチについて検討する。
本稿では進化的アルゴリズムに触発されたEvolverという知識融合手法を提案する。
論文 参考訳(メタデータ) (2024-06-18T02:12:34Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
本研究では、独自の学習データセットに加えて、生成したコンテンツをフィードバックする生成モデルの学習ダイナミクスについて検討する。
各イテレーションで十分な量の外部データが導入されない限り、非自明な温度がモデルを退化させることを示す。
論文 参考訳(メタデータ) (2024-04-02T21:51:39Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Hierarchical Few-Shot Generative Models [18.216729811514718]
本稿では,ニューラルネットワークを階層的なアプローチに拡張する潜伏変数のアプローチについて検討する。
以上の結果から,階層的な定式化は,小データ構造における集合内の内在的変動をよりよく捉えることが示唆された。
論文 参考訳(メタデータ) (2021-10-23T19:19:39Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
生成モデル学習のための対照的なフレームワークを開発し、モダリティ間の共通性だけでなく、「関連」と「関連しない」マルチモーダルデータの区別によってモデルを訓練することができる。
提案手法では, 生成モデルを用いて, 関係のないサンプルから関連サンプルを正確に識別し, ラベルのない多モードデータの利用が可能となる。
論文 参考訳(メタデータ) (2020-07-02T15:08:11Z) - Unsupervised multi-modal Styled Content Generation [61.040392094140245]
UMMGANは、教師なし方式でマルチモーダル分布をモデル化するために設計された新しいアーキテクチャである。
UMMGANはモードとスタイルを効果的に切り離し、生成したコンテンツに対して独立した制御を行うことができることを示す。
論文 参考訳(メタデータ) (2020-01-10T19:36:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。