Limited Memory Online Gradient Descent for Kernelized Pairwise Learning
with Dynamic Averaging
- URL: http://arxiv.org/abs/2402.01146v1
- Date: Fri, 2 Feb 2024 05:21:50 GMT
- Title: Limited Memory Online Gradient Descent for Kernelized Pairwise Learning
with Dynamic Averaging
- Authors: Hilal AlQuabeh, William de Vazelhes, Bin Gu
- Abstract summary: We introduce a lightweight OGD algorithm that does not require the independence of examples and generalizes to kernel pairwise learning.
Our algorithm builds the gradient based on a random example and a moving average representing the past data, which results in a sub-linear regret bound with a complexity of $O(T)$.
Several experiments with real-world datasets show that the complexity technique outperforms kernel and linear gradient in offline and online scenarios.
- Score: 18.843097436906618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pairwise learning, an important domain within machine learning, addresses
loss functions defined on pairs of training examples, including those in metric
learning and AUC maximization. Acknowledging the quadratic growth in
computation complexity accompanying pairwise loss as the sample size grows,
researchers have turned to online gradient descent (OGD) methods for enhanced
scalability. Recently, an OGD algorithm emerged, employing gradient computation
involving prior and most recent examples, a step that effectively reduces
algorithmic complexity to $O(T)$, with $T$ being the number of received
examples. This approach, however, confines itself to linear models while
assuming the independence of example arrivals. We introduce a lightweight OGD
algorithm that does not require the independence of examples and generalizes to
kernel pairwise learning. Our algorithm builds the gradient based on a random
example and a moving average representing the past data, which results in a
sub-linear regret bound with a complexity of $O(T)$. Furthermore, through the
integration of $O(\sqrt{T}{\log{T}})$ random Fourier features, the complexity
of kernel calculations is effectively minimized. Several experiments with
real-world datasets show that the proposed technique outperforms kernel and
linear algorithms in offline and online scenarios.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Variance Reduced Online Gradient Descent for Kernelized Pairwise
Learning with Limited Memory [19.822215548822882]
Online gradient descent (OGD) algorithms have been proposed to handle online pairwise learning, where data arrives sequentially.
Recent advancements in OGD algorithms have aimed to reduce the complexity of calculating online gradients, achieving complexities less than $O(T)$ and even as low as $O(1)$.
In this study, we propose a limited memory OGD algorithm that extends to kernel online pairwise learning while improving the sublinear regret.
arXiv Detail & Related papers (2023-10-10T09:50:54Z) - Ordering for Non-Replacement SGD [7.11967773739707]
We seek to find an ordering that can improve the convergence rates for the non-replacement form of the algorithm.
We develop optimal orderings for constant and decreasing step sizes for strongly convex and convex functions.
In addition, we are able to combine the ordering with mini-batch and further apply it to more complex neural networks.
arXiv Detail & Related papers (2023-06-28T00:46:58Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Pairwise Learning via Stagewise Training in Proximal Setting [0.0]
We combine adaptive sample size and importance sampling techniques for pairwise learning, with convergence guarantees for nonsmooth convex pairwise loss functions.
We demonstrate that sampling opposite instances at each reduces the variance of the gradient, hence accelerating convergence.
arXiv Detail & Related papers (2022-08-08T11:51:01Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.