Quantum simulation of Fermi-Hubbard model based on transmon qudit
interaction
- URL: http://arxiv.org/abs/2402.01243v1
- Date: Fri, 2 Feb 2024 09:10:40 GMT
- Title: Quantum simulation of Fermi-Hubbard model based on transmon qudit
interaction
- Authors: Arian Vezvaee, Nathan Earnest-Noble, Khadijeh Najafi
- Abstract summary: We introduce a novel quantum simulation approach utilizing qudits to overcome such complexities.
We first demonstrate a Qudit Fermionic Mapping (QFM) that reduces the encoding cost associated with the qubit-based approach.
We then describe the unitary evolution of the mapped Hamiltonian by interpreting the resulting Majorana operators in terms of physical single- and two-qudit gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Fermi-Hubbard model, a fundamental framework for studying strongly
correlated phenomena could significantly benefit from quantum simulations when
exploring non-trivial settings. However, simulating this problem requires twice
as many qubits as the physical sites, in addition to complicated on-chip
connectivities and swap gates required to simulate the physical interactions.
In this work, we introduce a novel quantum simulation approach utilizing qudits
to overcome such complexities. Leveraging on the symmetries of the
Fermi-Hubbard model and their intrinsic relation to Clifford algebras, we first
demonstrate a Qudit Fermionic Mapping (QFM) that reduces the encoding cost
associated with the qubit-based approach. We then describe the unitary
evolution of the mapped Hamiltonian by interpreting the resulting Majorana
operators in terms of physical single- and two-qudit gates. While the QFM can
be used for any quantum hardware with four accessible energy levels, we
demonstrate the specific reduction in overhead resulting from utilizing the
native Controlled-SUM gate (equivalent to qubit CNOT) for a fixed-frequency
ququart transmon. We further transpile the resulting two transmon-qudit gates
by demonstrating a qudit operator Schmidt decomposition using the
Controlled-SUM gate. Finally, we demonstrate the efficacy of our proposal by
numerical simulation of local observables such as the filling factor and
Green's function for various Trotter steps. The compatibility of our approach
with different qudit platforms paves the path for achieving quantum advantage
in simulating non-trivial quantum many-body systems.
Related papers
- Trapped-ion quantum simulation of the Fermi-Hubbard model as a lattice gauge theory using hardware-aware native gates [0.3370543514515051]
Trotterization-based quantum simulations have shown promise, but implementations on current hardware are limited by noise.
A mapping of the Fermi-Hubbard model to a Z2 LGT was recently proposed that restricts the dynamics to a subspace protected by additional symmetries, and its ability for post-selection error mitigation was verified through noisy classical simulations.
In particular, a novel combination of iteratively preconditioned gradient descent (IPG) and subsystem von Neumann Entropy compression reduces the 2-qubit gate count of FHM quantum simulation by 35%.
arXiv Detail & Related papers (2024-11-12T13:21:12Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - A recipe for local simulation of strongly-correlated fermionic matter on quantum computers: the 2D Fermi-Hubbard model [0.0]
We provide a step-by-step recipe for simulating the paradigmatic two-dimensional Fermi-Hubbard model on a quantum computer using only local operations.
We provide a detailed recipe for an end-to-end simulation including embedding on a physical device.
arXiv Detail & Related papers (2024-08-26T18:00:07Z) - Simulating quantum field theories on gate-based quantum computers [0.0]
We implement a simulation of a quantum field theory in 1+1 space-time dimensions on a gate-based quantum computer.
We show that experimentally relevant quantities like cross-sections for various processes, survival probabilities of various states, etc. can be computed.
arXiv Detail & Related papers (2024-01-09T11:17:08Z) - Quantum Computation and Simulation using Fermion-Pair Registers [0.0]
We propose and analyze an approach to realize quantum computation and simulation using fermionic particles under quantum gas microscopes.
We describe how to engineer the SWAP gate and high-fidelity controlled-phase gates.
We show that 2D quantum Ising Hamiltonians with transverse and longitudinal fields can be efficient simulated by modulating Feshbach interaction strengths.
arXiv Detail & Related papers (2023-06-06T17:59:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Gutzwiller wave function on a quantum computer using a discrete
Hubbard-Stratonovich transformation [0.7734726150561086]
We propose a quantum-classical hybrid scheme for implementing the nonunitary Gutzwiller factor.
The proposed scheme is demonstrated with numerical simulations for the half-filled Fermi-Hubbard model.
arXiv Detail & Related papers (2022-01-27T08:57:04Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.