A recipe for local simulation of strongly-correlated fermionic matter on quantum computers: the 2D Fermi-Hubbard model
- URL: http://arxiv.org/abs/2408.14543v1
- Date: Mon, 26 Aug 2024 18:00:07 GMT
- Title: A recipe for local simulation of strongly-correlated fermionic matter on quantum computers: the 2D Fermi-Hubbard model
- Authors: Arash Jafarizadeh, Frank Pollmann, Adam Gammon-Smith,
- Abstract summary: We provide a step-by-step recipe for simulating the paradigmatic two-dimensional Fermi-Hubbard model on a quantum computer using only local operations.
We provide a detailed recipe for an end-to-end simulation including embedding on a physical device.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The simulation of quantum many-body systems, relevant for quantum chemistry and condensed matter physics, is one of the most promising applications of near-term quantum computers before fault-tolerance. However, since the vast majority of quantum computing technologies are built around qubits and discrete gate-based operations, the translation of the physical problem into this framework is a crucial step. This translation will often be device specific, and a suboptimal implementation will be punished by the exponential compounding of errors on real devices. The importance of an efficient mapping is already revealed for models of spinful fermions in two or three dimensions, which naturally arise when the relevant physics relates to electrons. Using the most direct and well-known mapping, the Jordan-Wigner transformation, leads to a non-local representation of local degrees of freedom, and necessities efficient decompositions of non-local unitary gates into a sequence of hardware accessible local gates. In this paper, we provide a step-by-step recipe for simulating the paradigmatic two-dimensional Fermi-Hubbard model on a quantum computer using only local operations. To provide the ingredients for such a recipe, we briefly review the plethora of different approaches that have emerged recently but focus on the Derby-Klassen compact fermion mapping in order to make our discussion concrete. We provide a detailed recipe for an end-to-end simulation including embedding on a physical device, preparing initial states such as ground states, simulation of unitary time evolution, and measurement of observables and spectral functions. We explicitly compute the resource requirements for simulating a global quantum quench and conclude by discussing the challenges and future directions for simulating strongly-correlated fermionic matter on quantum computers.
Related papers
- Quantum simulation of Fermi-Hubbard model based on transmon qudit
interaction [0.0]
We introduce a novel quantum simulation approach utilizing qudits to overcome such complexities.
We first demonstrate a Qudit Fermionic Mapping (QFM) that reduces the encoding cost associated with the qubit-based approach.
We then describe the unitary evolution of the mapped Hamiltonian by interpreting the resulting Majorana operators in terms of physical single- and two-qudit gates.
arXiv Detail & Related papers (2024-02-02T09:10:40Z) - Simulating 2D lattice gauge theories on a qudit quantum computer [2.2246996966725305]
We present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics.
This is made possible by the use of a trapped-ion qudit quantum processor.
Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional.
arXiv Detail & Related papers (2023-10-18T17:06:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Fermionic quantum processing with programmable neutral atom arrays [0.539215791790606]
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.
We present a fermionic quantum processor, where fermionic models are encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates.
arXiv Detail & Related papers (2023-03-13T10:35:48Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - An application benchmark for fermionic quantum simulations [0.0]
It is expected that the simulation of correlated fermions in chemistry and material science will be one of the first practical applications of quantum processors.
We propose using the one-dimensional Fermi-Hubbard model as an application benchmark for variational quantum simulations on near-term quantum devices.
arXiv Detail & Related papers (2020-03-04T02:23:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.